Tag Archives: MPO/MTP solutions

MTP Fiber Cable Solutions

Share

MTP technology with multi-fiber connectors offers ideal conditions for setting up high-performance data networks in data centers to handle future requirements. This technology makes scaling and migration to network operation with 40/100 Gigabit Ethernet easier and more efficient. There are many MTP products in the market now, such as MTP fiber cables, MTP connectors, MTP cassettes and MTP adapters. This text will tell some MTP fiber cable solutions.

Introduction of MTP Fiber System
MTPThe MTP fiber system is a truly innovative group of products that moves fiber optic networks into the new millennium. MTP fiber and MTP assemblies take their name from the MTP “Multi-fiber Termination Push-on” connector, designed and introduced as a high performance version of the MPO connectors. MTP does interconnect with the MPO connectors. Each MTP contains 12 fibers or 6 duplex channels in a connector smaller than most duplex connections in use today. MTP connectors allow high-density connections between network equipment in telecommunication rooms. It is the same size of a SC connector but since it can accommodate 12 fibers, it provides up to 12 times the density, thereby offering savings in circuit card and rack space.

Types of MTP Fiber Cable
MTP fiber cables as an important part of the multi-fiber connection system, are designed for the reliable and quick operations in data centers. The obvious benefits of these cables are less space requirements and improved scalability, providing significant space and cost savings. The MTP cables are generally used for 40GbE and 100GbE network environment.

There are two configurations for MTP cable assemblies. One is the MTP connector to MTP connector trunk cable that connects a MTP cassette to another MTP cassette. Another is MTP connector to LC or other fiber connector. Which is often called the MTP harness cable.

  • MTP Trunk Cables
    MTP trunk cables, serve as a permanent link connecting the MTP modules to each other, are available in 12-144 counts. MTP patch cords will not be used until 40G and 100G active devices are employed (with MTP interface). The ends of MTP patch cords are terminated with the customer’s choice of 12-fiber or 24-fiber MTP connectors. These high count MTP assemblies are ideal for backbone and data center applications that require a high fiber count in a limited space.

MTP Trunk Cables

  • MTP Harness Cables
    MTP harness cables, also called MTP breakout cable or MTP fanout cable, are available in 8-144 counts. The MTP harness cables work from trunk backbone assemblies to fiber rack system in the high density backbone cabling. As terminated with MTP connectors on one end and standard LC/FC/SC/ST/MTRJ connectors (generally MTP to LC) on the other end, these cable assemblies can meet a variety of fiber cabling requirements.

MTP Harness Cables

MTP Fiber Cable for 40GbE and 100GbE
Parallel optics technology has become the transmission option of choice in many data centres and labs as it is able to support 10G, 40G, and 100G transmission. Since parallel optical communication uses multiple paths to transmit a signal at a greater data rate, factory terminated MTP connectors which have either 12 fibre or 24 fibre array will support this solution.

No matter for 40G or 100G transmission, there are two MTP cable solutions. One is with the MTP trunk cable, the other is with the MTP harness cable. QSFP to QSFP uses MTP trunk cable, and QSFP to 4 SFP+ uses MTP harness cable.

  • MTP Cable 40G Solutions
    For 40GbE, a 12-fiber MTP trunk cable is used. 10G is sent along each channel/fibre strand in a send and receive direction. Here 8 of 12 fibres providing 40G parallel transmission. Shown in the following picture.

MTP 40G
For 40GbE, a 12-fiber MTP to LC harness cable is used. The IEEE ratified the 40GBASE-SR4 (MTP interface) standard that uese 4 lanes at 10G SFP+ (LC interface) per lane over multimode fiber for a total of 8 fibers. Shown in the following picture.

MTP 40G

  • MTP Cable 100G Solutions
    For 100GbE, a 24-fiber MTP trunk cable is used. 10G is sent along each channel/fibre strand in a send and receive direction. Here 20 of 24 fibres providing 100G parallel transmission. Shown in the following picture.

MTP 100G
For 100GbE, a 24-fiber MTP to LC harness cable is used. The IEEE ratified the 100GBASE-SR10 (MTP interface) standard that uese 10 lanes at 10G SFP+ (LC interface) per lane over multimode fiber for a total of 20 fibers. Shown in the following picture.

MTP 100G

MTP/MPO System Solutions – High Density Connectivity in the Data Center

Share

MPO/MTP system solutions are steadi-ly gaining in significance. Data centers in particular have a great need for compact and flexible plug-and-play systems that are pre-measured and preterminated at the factory. MPO/MTP system solutions allow users to achieve complete end-to-end cabling in keeping with the new standard for data centers. In the IEEE 802.3 standard, 40 Gb/s and 100Gb/s were defined with MPO connector technology. The crucial factor is the insertion loss and return loss of the components. Controlled production processes and ultra-precise end-face geometry are needed to satisfy these tough requirements. With the MPO/MTP multi-fiber system, a data center is well-equipped for future transmission rates of 40 and 100Gb/s.

Benefits of deploying modular, high-density optical solutions, such as MPO-based connectivity (including MPO trunk assemblies, breakout modules and breakout harnesses) in a structured wiring architecture include 50% cable-tray space savings, 80% improvement in deployment time, and 70% bulk-cable reduction in cabinets and racks. A modular, high-density solution deployed in a structured wiring topology can easily scale to hundreds of thousands of ports and significantly reduce the time to conduct MACs in the data center, thus reducing operational costs.

So now, we have the means to cope with future growth and churn in the data center. Now, let’s address the issue of keeping this modular high-density structured cabling system in place to handle future higher-data-rate applications.

In addition to manageability and scalability, a benefit to deploying a modular, high-density MPO-based cabling system is the available migration path to increased data rates. With some consideration of performance specifications, the infrastructure can easily migrate to future higher-data-rate technologies, such as parallel optics, which will be used in 32-, 64-, and 128-Gigabit Fibre Channel; and 40- and 100-Gigabit Ethernet. In fact, by deploying an optical cabling system that meets InfiniBand 12X-QDR (120-Gbit) cable skew performance requirements of = 0.75 ns and distance specifications, the same infrastructure that is carrying serial transmission today can be easily migrated to transmit parallel-optic InfiniBand signals.

To mitigate this issue and increase the lifecycle of an optical-cabling infrastructure, deploy high-quality low-loss optical components. Low-loss MPO trunks, breakout harnesses, modules and jumpers minimize channel insertion loss and enable the cabling infrastructure to easily migrate to future higher data rates.

For example, 8-Gbit Fibre Channel will support a distance of 100 meters using OM3 fiber and a connector budget no greater than 2.4 dB. If an MPO mated pair has a maximum insertion loss of 0.5 dB, and each MTP-to-LC breakout module wasspecified at a maximum insertion loss of 0.75 dB, then theresulting maximum connector loss in the channel will be 2.75 dB.

This exceeds the recommended maximum 2.4 dB connector loss budget of 8-Gbit Fibre Channel at 100 meters, thereby reducing the supportable distance at 8-Gbit Fibre Channel; however, if low-loss components were specified into the same cable plant at 0.5-dB maximum insertion loss per MTP-to-LC breakout module and 0.35-dB maximum per MTP mated pair, then the resulting maximum connector loss in the channel will be 1.85 dB, providing support of 8-Gbit Fibre Channel beyond 100 meters.

As previously discussed, TIA-942 addresses the use of ZDAs as part of the recommended topology for datacenters. Implementing a distributed zone solution reduces pathway congestion and facilitates the implementationof MACs common in the data center environment. Implementing a zone topology can increase the number of connection points in a given channel. Using components with low-loss performance enables zone connectivity without sacrificing distance capabilities due to channel insertion loss.

MPO Fiber

Additional methods to implement zone distribution with reduced channel insertion loss include using components that are optimized for the architecture. Solutions that offer a combined MPO-based trunk assembly and breakout module can eliminate connector pairs while still offering the flexibility of zone cabling, thereby reducing total channel insertion loss. Now we introduce some MTP/MPO assemblies when you are solving MTP/MPO system.

MTP high density cabling solutions utilizes MPO (multi fiber push on) ferrule providing connection of 12 or 24 fibers. MTP provides superior physical and optical characteristics than standard MPO for precision alignment with spring loaded mechanism and guide pins. They have a removable adaptor that mates female connectors to a male connector with specially designed guide pins for orientation and maintaining polarity along the channel. The Micro-core cables used in factory terminated MTP fiber cable assemblies give 65% reduction in cable size from traditional fiber cables. Pre-connected MTP solution with 24 core LC duplex adapters offers 72 LC terminations in 1U rack space and 288 LC terminations in 4U rack space using modular patch panels.

MTP Patch Panels are scalable modular which are designed for high density Gigabit Ethernet Applications.They are used for terminating backbone cables at the Main Distribution Area (MDA) and Horizontal Distribution Area (HDA). MTP Patch Panels are available with 1U and 4U, suitable for standard 19” racks. 1U MTP Patch Panel can accommodate up to three MTP Cassettes, giving a high connectivity of 72 LC fiber terminations in it. 4U MTP Patch Panel can accommodate up to 12 MTP Cassettes, resulting in a maximum of 288 LC terminations per panel.

Fiberstore offer a wide range of MTP/MPO product including MTP and MPO trunk cables, MPO and MTP cassettes, MTP and MPO harness (breakout) cables. MTP/MPO Cable assemblies are fully compliant with IEC Standard 61754-7 and TIA 604-5. All MTP and MPO assemblies can be customize. More details, please call us or send an email to our customer services.