Tag Archives: MTP trunk cable

40GBASE-SR4/CSR4 QSFP+ Transceiver Direct Connection Cabling

Share

As we all know, the standard specifies MPO as a connector to the 40GBASE-SR4/CSR4 QSFP+ transceiver. To connect a QSFP+ to QSFP+, we usually use a MTP 12-fiber trunk cable. In the 40GBASE-SR transmission, there are eight fibers associated with the channel—four fibers for the TX signal and four fibers for the RX signal. Therefore only 8 of the 12 fibers are used, where the remaining four are not used, and can optionally be not present in the cable. So we can also choose a MTP 8-fiber trunk cable for connectivity. This article explains 40G QSFP+ SR4/CSR4 transceiver to 40G QSFP+ SR4/CSR4 transceiver cabling selections.

How to Choose Right  MTP Trunk Cables? 
In addition to using a MTP 8-fiber trunk cable or MTP 12-fiber trunk cable, there are a number of other factors also needed to be considered when to choose a right MTP trunk cable for 40G QSFP+ SR4/CSR4 transceiver connectivity.

  • Use single-mode or multimode MTP trunk cable?

In the market, both single-mode and multiode MTP trunk cable are available. Which one should I use? According to 40GBASE-SR4 standards, 40G QSFP+ SR4 transceiver supports link lengths of 100 meters and 150 meters, respectively, on laser-optimized OM3 and OM4 multimode fibers. Therefore, to connect a 40G QSFP+ SR4  to 40G QSFP+ SR4, we should choose OM3 or OM4 multimode MTP trunk cables.

  • MTP trunk cable polarity selection: A, B or C?

In terms of MTP trunk cable, there are three kinds of polarity options (A, B and C). Which one to choose? In fact, according to the IEEE 40GBASE-SR4 specifications, we must select a type B MTP 8-fiber or MTP 12-fiber trunk cable. The type B trunk cable has opposing connectors with both keys oriented facing up, however the fiber positions are reversed at each end i.e. the fiber at position 1 at one end is connected to position 12 in the connector at the opposing end.

Type-B-MTP-trunk-cable

  • Choose male or female MTP trunk cable?

In terms of a MPO connector, it is divided into male and female types. They ensure that the adapter holds the connector with the correct ends aligned with each other. A MPO trunk cable usually has two MPO connector on each side. Therefore, MTP trunk cables are available in male–male and female–female two versions. According to IEEE standards, MPO optics in a 40G QSFP+ SR4 transceiver are always male connectors, and therefore will always accept female MPO connectors. So if we want to connect a 40G QSFP+ SR4 transceiver  to a 40G QSFP+ SR4 transceiver successfully, we must choose a female–female MTP trunk cable.

40G QSFP+ SR4/CSR4 to 40G QSFP+ SR4/CSR4 Cabling Selections
In order to satisfy different cabling requirement, we may choose different cabling methods. And different cabling methods call for many different cabling infrastructure. Following are four type common cabling methods to connect a 40GBASE-SR4/CSR4 QSFP+ to 40GBASE-SR4/CSR4 QSFP+.

  • Direct connection for 40 Gigabit Ethernet parallel optic transceiver

When directly connecting one QSFP+ MPO/MTP interface transceiver to another, a Type-B female MPO/MTP to female MPO/MTP cable is required. This type of direct connectivity is only suggested for short distances within a given row of racks/cabinets. Following picture shows two QSFP+ transceivers being connected with a MTP female cable.

solutions_40G_pic01

Item Number FS Correlative Product Description FS Part Number
1 40GBASE-SR4 QSFP+, 850nm, 150m, MMF, MPO interface QSFP-SR4-40G
2 12 Fibers OM4, 12 Strands MTP Trunk Cable, Female to Female, Type B Polarity ( MTP/ MPO, OM4/ OM3 optional. Various lengths available) FS12OM4-2MTP-FF-B
  • 40GbE direct interconnect with MTP trunk cable and patch panel

For distances less than 400 meters, the use of FS MPO/MTP multi-mode fiber cabling is generally the preferred cabling method. The next solution is similar to the previous, but instead of using a 12-fiber jumper directly, the MPO/MTP adapter panel is interconnected. Following picture shows the distribution switch and FS optics and cabling options with corresponding item details for a QSFP+ to QSFP+ multi-mode interconnection.

solutions_40G_pic02

Item Number FS Correlative Product Description FS Part Number
1 40GBASE-SR4 QSFP+, 850nm, 150m, MMF, MPO interface QSFP-SR4-40G
2 12 Fibers OM4, 12 Strands MTP Trunk Cable, Female to Female, Type B Polarity ( MTP/ MPO, OM4/ OM3 optional. Various lengths available) FS12OM4-2MTP-FF-B
3 12 Ports MTP/MPO Fiber Adapter Panel, key-up to key-up FAP-HV-12MTPUUD
  • 10Gig migrate to 40GbE by interconnecting MTP LGX cassette and MTP trunk cable

Following picture shows one link with a breakout of the QSFP+ with the use of an MPO/MTP LGX cassette to four 10G SFP+ links. A Type-B female MPO/MTP to Female MPO/MTP assembly is used between the MPO/MTP LGX cassette and 40GbE transceiver. The connections to the SFP+ transceivers is accomplished with OM3/OM4 Uniboot LC duplex fiber patch cables.

solutions_40G_pic03

Item Number FS Correlative Product Description FS Part Number
1 10GBASE-SR SFP+, 850nm 300m, MMF, LC duplex SFP-10GSR-85
2 LC-LC Duplex 10G OM4, MMF Patch Cable OM4-LC-LC-DX-FS
3 12 Fibers OM4, LGX – MTP Cassette, MTP(male) to LC FS12OM4-LGX-2MTP-LC
4 MTP/MPO LGX Cassettes 1U/4U 19” Rack Mount FS-1RU-MX
5 12 Fibers OM4, 12 Strands MTP Trunk Cable, Female to Female, Type B Polarity ( MTP/ MPO, OM4/ OM3 optional. Various lengths available) FS12OM4-2MTP-FF-B
6 10GBASE-SR SFP+, 850nm 300m, MMF, LC duplex SFP-10GSR-85
  • 10Gig migrate to 40GbE by interconnecting MTP harness cable and MTP trunk cable

Sometimes, create a simple, cost-effective migration path by installing a structured cabling system that can support your future 40GbE networking needs. Following picture uses the 8-fiber harness as shown in the diagram to connect to 10G SFP+s. This approach allows for an easy upgrade path moving from 10Gig to 40GbE connectivity.

solutions_40G_pic04

Item Number FS Correlative Product Description FS Part Number
1 10GBASE-SR SFP+, 850nm 300m, MMF, LC duplex SFP-10GSR-85
2 8 Fibers OM4, 12 Strands MTP Harness Cable, MTP to LC, Type B Polarity ( MTP/ MPO, OM4/ OM3 optional. Various lengths available) OM4-LC-LC-DX-FS
3 12 Ports MTP/MPO Fiber Adapter Panel, key-up to key-up FAP-HV-12MTPUUD
4 Empty 1RU/4RU Rack Mount Fiber Patch Panel FMT1-E-FS
5 12 Fibers OM4, 12 Strands MTP Trunk Cable, Female to Female, Type B Polarity ( MTP/ MPO, OM4/ OM3 optional. Various lengths available) FS12OM4-2MTP-FF-B
6 40GBASE-SR4 QSFP+, 850nm, 150m, MMF, MPO interface QSFP-SR4-40G

Fiberstore provides wide brand compatible 40G QSFP+ SR4 transceivers and all kinds of MTP cables. Each fiber optic transceiver has been tested to ensure its compatibility and interoperability. Please rest assured to buy. For more information or quotation, please contact us via sales@fs.com.

Related Article: 40G Transceiver Module: QSFP+ Module And CFP Module

40G Network Connectivity Solutions

Share

High speed and wide bandwidth demands drive data centers to consolidate into more complex systems. The speed of data center now is increasing to 40G and eventually to 100G. How to achieve 40G connectivity? In fact, we need some new optical technologies and cabling infrastructure. In this post, I will introduce some commonly used qsfp and qsfp cable for 40G connectivity.

40G QSFP Modules
As we know, fiber optic transceiver is an electronic device that receives an electrical signal, converts it into a light signal, and launches the signal into a fiber. It also receives the light signal, from another transceiver, and converts it into an electrical signal. It is the key component in fiber optic transmission. The basic interface of 40G pluggable optical modules are 40GBASE-LR4 and 40GBASE-SR4 in QSFP+ form factor.

40G QSFP+

1. 40GBASE-SR4 QSFP+
40GBASE-SR4 transceivers are used in data centers to interconnect two Ethernet switches with 8 fiber parallel multimode fiber OM3/OM4 cables. It can support the transmission distance up to 100 m with OM3 fiber and 150 m with OM4 fiber. The optical interface of 40GBASE-SR4 is MPO/MTP. This module can be used for native 40G optical links or in a 4x10G mode with parallel to duplex fiber breakout cables for connectivity to four 10GBASE-SR interfaces.

2. 40GBASE-LR4 QSFP+
40GBASE-LR4 QSFP+ transceiver support with a link length up to 10 kilometers over 1310 nm single-mode fiber with duplex LC connectors. The 40 Gigabit Ethernet signal is carried over four wavelengths. Multiplexing and demultiplexing of the four wavelengths are managed within the device. It is most commonly deployed between data-center or IXP sites with single-mode fiber.

QSFP+ Cables
QSFP+ cable is designed to meet emerging data center and high performance computing application needs for a short distance and high density cabling interconnect system capable of delivering an aggregate data bandwidth of 40Gb/s. QSFP+ cables are suitable for very short distances and offer a highly cost-effective way to establish a 40G link between two switches within racks and across adjacent racks. These high speed cables provide a highly cost-effective way to upgrade from 10G to 40G or 40G to 40G interconnect connection.

1. Passive and Active Direct Attach Copper Cables
The 40g passive or active direct attach copper cables (DAC) are designed with twinax copper cable and terminated with QSFP+ connectors. The main difference between passive DAC and active DAC is that the passive one is without the active component. Therefore, active QSFP+ DAC can achieve a longer transmission distances than passive QSFP+ cable.

0.5m(1.6ft)-passive-40gbase-qsfp+-dac

2. Active Optical Cable (AOC cable) Assemblies
Active optical cable, namely AOC brings a more flexible cabling than direct attach copper cables with the advantages of lighter weigth, longer transmission distance and higher performance for anti-EMI. Now, 40G AOC cable are popular with users.

10m(32.8ft)-40gbase-qsfp+-to-qsfp+-aoc

MPO/MTP Cable Series
Since 40GBASE-SR4 and 40GBASE-CSR4 both use MPO/MTP connector. Therefore, in addition to fiber optic transceivers and direct attach cables, MTP cabling series usually needed to achieve 40G connectivity. This series include MTP trunk cables, MTP-LC harness/breakout cables, LC or MTP patch cables, MTP-LC cassette modules, MTP adapter panels and MTP rack mount holders.

MPOMTP Cabling Series

Fiberstore offers a comprehensive solution for 40G network connectivity. What’s more, products such as 40GBASE-LR4 and 40GBASE-SR4 modules are in stock and can shipped in 12hrs. For more information, please visit www.fs.com.

Related article: Do You Know about Active Optical Cable (AOC Cable)

MTP Fiber Cable Solutions

Share

MTP technology with multi-fiber connectors offers ideal conditions for setting up high-performance data networks in data centers to handle future requirements. This technology makes scaling and migration to network operation with 40/100 Gigabit Ethernet easier and more efficient. There are many MTP products in the market now, such as MTP fiber cables, MTP connectors, MTP cassettes and MTP adapters. This text will tell some MTP fiber cable solutions.

Introduction of MTP Fiber System
MTPThe MTP fiber system is a truly innovative group of products that moves fiber optic networks into the new millennium. MTP fiber and MTP assemblies take their name from the MTP “Multi-fiber Termination Push-on” connector, designed and introduced as a high performance version of the MPO connectors. MTP does interconnect with the MPO connectors. Each MTP contains 12 fibers or 6 duplex channels in a connector smaller than most duplex connections in use today. MTP connectors allow high-density connections between network equipment in telecommunication rooms. It is the same size of a SC connector but since it can accommodate 12 fibers, it provides up to 12 times the density, thereby offering savings in circuit card and rack space.

Types of MTP Fiber Cable
MTP fiber cables as an important part of the multi-fiber connection system, are designed for the reliable and quick operations in data centers. The obvious benefits of these cables are less space requirements and improved scalability, providing significant space and cost savings. The MTP cables are generally used for 40GbE and 100GbE network environment.

There are two configurations for MTP cable assemblies. One is the MTP connector to MTP connector trunk cable that connects a MTP cassette to another MTP cassette. Another is MTP connector to LC or other fiber connector. Which is often called the MTP harness cable.

  • MTP Trunk Cables
    MTP trunk cables, serve as a permanent link connecting the MTP modules to each other, are available in 12-144 counts. MTP patch cords will not be used until 40G and 100G active devices are employed (with MTP interface). The ends of MTP patch cords are terminated with the customer’s choice of 12-fiber or 24-fiber MTP connectors. These high count MTP assemblies are ideal for backbone and data center applications that require a high fiber count in a limited space.

MTP Trunk Cables

  • MTP Harness Cables
    MTP harness cables, also called MTP breakout cable or MTP fanout cable, are available in 8-144 counts. The MTP harness cables work from trunk backbone assemblies to fiber rack system in the high density backbone cabling. As terminated with MTP connectors on one end and standard LC/FC/SC/ST/MTRJ connectors (generally MTP to LC) on the other end, these cable assemblies can meet a variety of fiber cabling requirements.

MTP Harness Cables

MTP Fiber Cable for 40GbE and 100GbE
Parallel optics technology has become the transmission option of choice in many data centres and labs as it is able to support 10G, 40G, and 100G transmission. Since parallel optical communication uses multiple paths to transmit a signal at a greater data rate, factory terminated MTP connectors which have either 12 fibre or 24 fibre array will support this solution.

No matter for 40G or 100G transmission, there are two MTP cable solutions. One is with the MTP trunk cable, the other is with the MTP harness cable. QSFP to QSFP uses MTP trunk cable, and QSFP to 4 SFP+ uses MTP harness cable.

  • MTP Cable 40G Solutions
    For 40GbE, a 12-fiber MTP trunk cable is used. 10G is sent along each channel/fibre strand in a send and receive direction. Here 8 of 12 fibres providing 40G parallel transmission. Shown in the following picture.

MTP 40G
For 40GbE, a 12-fiber MTP to LC harness cable is used. The IEEE ratified the 40GBASE-SR4 (MTP interface) standard that uese 4 lanes at 10G SFP+ (LC interface) per lane over multimode fiber for a total of 8 fibers. Shown in the following picture.

MTP 40G

  • MTP Cable 100G Solutions
    For 100GbE, a 24-fiber MTP trunk cable is used. 10G is sent along each channel/fibre strand in a send and receive direction. Here 20 of 24 fibres providing 100G parallel transmission. Shown in the following picture.

MTP 100G
For 100GbE, a 24-fiber MTP to LC harness cable is used. The IEEE ratified the 100GBASE-SR10 (MTP interface) standard that uese 10 lanes at 10G SFP+ (LC interface) per lane over multimode fiber for a total of 20 fibers. Shown in the following picture.

MTP 100G