Tag Archives: fiber optic cable specifications

Fiber Optic Media Converters Used In Ethernet Networks


About Fiber Optic Media Converter:

A fiber optic media converter is a simple networking device, the fiber to ethernet media converter can converts one network media type (defined by the cable, connector, and bandwidth) into another. They are also used in metropolitan area network (MAN) access and data transport services to enterprise customers. This transition allows any business, no matter what its size, to expand their old network with the latest technology. This flexibility allows for a greater efficiency and harmony between departments and individuals.

A typical media converter is made up of two transceivers, sometimes referred to as media attachment units. These can transmit data to and from each other. Each MAU (Media Attachment Unit) comes with a different industry standard format fibre connector which is able to join different types of media. The basic concept is that one media type enters and another exits. All connectors are up to date with the latest IEEE standards and protocols.

Benefits of Ethernet to Fiber Optic Converters:

  • Protects your investment in existing copper ethernet-based hardware
  • Provides you with the flexibility to add fiber on a port-by-port basis
  • Enjoy the benefits of fiber without have to make wholesale changes
  • Fast ethernet or Gigabit ethernet to multi-mode or single mode
  • Ethernet to fiber and fiber back to ethernet links
  • Create copper-fiber connections with fiber switches

Why used the fiber to ethernet media converter?

Fiber to Ethernet Media Converter models that are best suited for enterprise and Service Provider applications, offer an on-board processor to continuously monitor that both fiber connections are up. This functionality, generally referred to as “Link Pass-Through”, monitors the state of the link to the end devices and ensures that each end-point knows whether the entire link is up or not. Some media converter products do not have this intelligence and simply “nail up” the link even though the fiber link peer is down. With Link Pass-Through, a feature available in all FiberStore Fiber to Fiber Optic Converters, the network’s SNMP management system can be alerted when a fault occurs so that corrective action can take place.

Fiber to ethernet network media converters are used in Cisco Systems, IBM, Nortel, Microsoft and ADC. By using our media converters, these world leading enterprises cut their cabling cost. Based on Transition Point System advantages, users could save the cost while do not degrade the network performance.

FiberStore is an professional manufacturer & supplier of fiber to Ethernet converter and fiber optic cable. All of our fiber media converters are tested in house prior to shipping to guarantee that they will arrive in perfect physical and working condition. If you have questions about optics(such as customized the fiber to ethernet converter,fiber optic cable specifications,ect.), please feel free to contact us at sales@fs.com.

Specifications for MTP and MPO Trunk Cable


Along with the recent addition of new MTP and MPO trunk cable products for sale from FiberStore. Our company manufactures and distributes a wide range of MTP/MPO products including single mode or multimode MPO and MTP fiber patch cable.  Multi fiber ferrule connections used in high-density backplane and Printed Circuit Board (PCB) applications in data and telecommunications systems.  High density MTP/MPO trunk cables with up to 288 fibers in a single cable.  The MPO fiber cable connector offers up to 12 times the density of standard connectors, providing significant space and cost savings. The MTP/MPO patch cables and fanouts are designed to support high-speed, short-reach, data center applications.

mpo trunk cable

MPO/MTP Trunk Cable Specifications:

MPO trunk cable connectors utilize precision molded MT ferrules, with metal guide pins and precise housing dimensions to ensure fiber alignment when mating. Fiberstore MPO/MPT trunk cables using a compact and rugged microcable structure, according to different colors divided into SM, MM and 10G MM (such as OM4 MPO cable). The fiber ranges from 12 to 144, MTP polarity options are TIA way is Style A(up), Style B(down) and Style C(up/up).

The MPO/MTP Trunk cable is designs for Data Center Applications. It is divided into round cable and flat cable with the outer diameter of 3.0 mm or 4.5 mm. The connector where this cable is terminated on is the so called MPO/MTP connector. 10Gb, 40Gb and 100Gb configurations are also available.

MPO cables can fan-out to other connections such as SC or LC to interconnect with standard-density products or services, generally using 12 or 24 fibre cassettes.

The MPO system uses ribbon-fibre cables and typically has 6 or 12 cores housed in one high-density MPO connector. MPO cables can fan-out to other connections such as SC or LC to interconnect with standard-density products or services, generally using 12 or 24 fibre cassettes.

MTP/MPO Trunk Cable Assemblies are designed for high density application which offers excellent benefits in terms on-site installation time and space saving. These plug and play solutions uses micro core cable to maximize bend radius and minimize cable weight and size. MPO/MTP Trunk Cable are factory pre-terminated, tested and packed along with the test reports. Available in 12 core configuration, these space saving assemblies comes with either MTP Male or MTP Female Connectors on both the other end. They are available in lengths of 5, 10, 20, 50, 100 meters, custom lengths are available on request. MPO/MTP Trunk Cables are available in Single mode, Multimode OM1, OM2, OM3 or OM4 with LSZH or PVC Jackets.

MPO/MTP Trunk Cable Features:

  •     Used in 12-fiber or 24-fiber cabling systems
  •     Available in OM1, OM2, OM3 multimode fiber and OM4 multimode fiber
  •     Available in FC,LC, SC, ST, MU, and MTP
  •     Interface polished type has PC, UPC and APC
  •     Available in 12 / 24 / 36 / 48 / 72 / 96 / 144-fibers
  •     Up to 70% faster install than field-terminated trunks
  •     Optional pulling eye protects connectors and eases installation
  •     100% factory tested, with test results included for each assembly
  •     Discrete connectors are heat-cured and use ceramic ferrules and sleeves
  •     Fan-out fibers from MPO/MTP connectors into individual simplex or duplex
  •     Customized for length, staggering, connector type, breakout style, fiber count, and labeling fiber

The MPO patch cable is supplied protected in a plastic bag and packed in a carton box. Each cable has two identification labels, each containing: barcode, part number, factory order number, cable lengths and unique serial number.

For more MTP and MPO trunk cable products,or want to know kinds of fiber optic cable specifications, pls click fiber optic shop.The cable length can up to 999 ft, and breakout length from 12-99 inches. Actually, it belongs to a custom product, please kindly email your requirements to us!

OM3 OR OM4 Cable Which One Do You Need


Many types of fiber optic cable in the online company supply.It has many choices in the internet.How to choose the right fiber optic cables if you needed? Such as the OM3 multimode fiber OR OM4 multimode fiber.The first we must know fiber optic cable specifications,and  know their different,and finally to determine which one is the most suitable.

10G Ethernet:

The 10G Ethernet basic power budget is about 6dB but this is degraded for longer link lengths due to signal distortions such as modal dispersion. These distortions mean that the detector requires more power to operate. The way this extra power is accommodated in channel planning is through a “power penalty”. In our example, the power penalty increases from 0 to almost 5dB for the maximum channel length. The penalty is not linear and increases dramatically as the maximum length is reached. In designing the channel, a key factor is the power budget available for connection loss. This is the total power budget inclusive of penalties reduced by the cable attenuation, leaving that portion of the power budget that may be used to cover connector insertion loss, splice loss, bend loss and contamination.The table opposite shows that at 300m with OM3 the loss available for all connections is only 1.79dB. On the other end OM4 allows up to 4.55dB, an increase of 2.76dB. A typical data centre channel may have eight connections. For OM3, the average loss must be less than 0.24dB,including all factors which means premium terminations must be used and there is no margin for installation faults, pinched cables or any other channel problem With a budget of 0.57dB per connection, OM4 allows considerable headroom to support a stable network. Know more OM3 and OM4 in this blog ,it can help you to choose the best cable in your project.

OM3 multimode fiber:

OM3 10G fiber optic cables which are used for 10Gigabit Ethernet applications. These cables are also called multimode OM3 10G Aqua fiber optic cables. Our OM3 10G cables are various types including different connector types, cable structure and cable length. Our OM3 multimode fiber that are compliant to ISO/IEC 11801 standards. These cables are used for 10Gbps networks to meet the requirement of continuous growing of high data rates.Typically 10 Gigabit applications are run on 9/125 Single Mode fiber, which require costly single mode transceivers. By utilizing the FOB501B series cables, you can implement low cost multimode transceivers or VCSEL’s (Vertical Cavity Surface Emitting Lasers) resulting in greater overall system cost savings.

OM4 multimode fiber:

OM4 is the latest high modal bandwidth high performance 50/125 Graded Index Multimode (GIMM) cabled fibre specification. OM4 fibre enables extended range performance over high bit rate links such as 8 Gigabit Fibre Channel and 10 Gigabit Ethernet compared to existing fibre types. FiberStore offer a wide range of OM4 compliant cable assembly products in both standard OM4 and Reduced Bend Sensitivity (RBS) OM4 variants.

What is the difference between OM3 and OM4 fiber?

First, OM stands for optical multi-mode. Both OM3 an OM4 are  50/125 core fiber but they have different internal construction that allows the OM4 fiber to provide the same performance as OM3 but for longer distances. The reason for this is the difference in bandwidth, OM3 has 2500 megahertz bandwidth , OM4 has 4700 megahertz bandwidth. What this translates to is longer transmission distances for the OM4 fiber. So you will need to know the distance of the fiber run in order to help decide which kind of fiber and fiber accessories need to be used.

For more fiber optic cable specifications,pls contact with fibre optic cable suppliers.

The Importance Of Waterproof Cable


The basic mechanical failure mechanism for optical fibres is the slow to rapid growth of any glass imperfections in the fibre caused by the fibre being under stress. This ‘fatigue’ phenomenon can be accelerated with the presence of moisture (H2O) molecules at the glass surface of the fibre. So the waterproof for fiber optic cable is very important . Now let us know more info about waterproof cable.

All manufacturers of fibre optic cables intended for use outdoors must address the issue of protecting the fibre’s glass surface from the presence of moisture. Many manufacturers provide the waterproof characteristic to solve the problem. This is because the 250μm primary fibre coating provides only a 62.5μm-thick layer of UV-cured acrylate material as basic protection over the fibre’s glass surface. This UV-cured acrylate material is not chosen by the fibre manufacturers for its optimal resistance to water or its minimal porosity. It is in fact chosen primarily because of its fast processing speed,since a primary cost driver for fibre manufacturers is the draw speed, which is steadily increasing. The very thin UV-cured acrylate layer is porous to water molecules and will permit concentration of OH-ions at the fibre surface, if the fibre is immersed in water.

All plastic materials are porous to varying degrees. The general category of thermoplastic materials commonly used in cable constructions will to some extent absorb water; however, thermoplastic materials certainly do not act as a complete water block. Only materials like metals or glass can provide a true ‘hermetic’ seal. Plastic materials are generally characterised with parameters such as water absorption and absorption of other common solvents such as oils, gasoline, kerosene, etc. This being the case, water molecules cannot be eliminated from the glass surface of any fibres incorporated in a cable having plastic jackets. The issue is to minimise the concentration of water molecules at the glass surface so that stress crack growth effects are minimised.

There are two different designs approaches to water and moisture protection in fibre optic cables.

The loose tube gel-filled cables must prevent water from reaching the 250μm coated fibres. This approach is to ‘waterproof’ the cable by ‘filling’ the empty spaces in the cable with gel, theoretically preventing water from reaching the 250μm coated fibres. To insure that this is accomplished, the ‘filled’ cables are generally subjected to a hosing test to show that water will not flow through a short section (one meter) of cables. The fact that gels can move, flow, and settle, leaves an uncertainty of the filled level of any particular point of a loose-tube gel-filled cable. This uncertainty of the filling is highlighted by the routine practice of water-blocking the loose-tube gel-filled cables at the entrance to splice housings to keep water from migrating from the cable into the splice housing.

The tight-buffered, tight bound indoor/outdoor cables utilise an entirely different design approach to deal with the moisture issue. Rather than attempting to be ‘waterproof’, they are designed to be water tolerant.

Recognising the porosity of plastic materials and the inherent problems of waterproofing a cable, the moisture protection is concentrated at the fibre surface where it is most needed.

Correctly designed harsh environment tight-buffer systems consist of extremely low moisture absorption coefficient materials at the fibre coating. This provides a buffer system thickness of 387μm over the glass which is more than six times as thick as the 62.5μm coating found in the loose-tube cables.

Buffer materials are low-porosity plastics with excellent moisture resistance. This construction very effectively minimises the water molecule and OH-ion concentration level at the glass surface and virtually eliminates the stress corrosion phenomenon. The tight-buffered design also has the great advantage of being a solid, non-flowing, non-moving structure.
The same level of protection remains in place all along the fibre, regardless of installation conditions, environment, or time.
The balance of the tight-buffered, tight bound cable designs is such that it minimises the open spaces available in the cable structure in which water can reside. Even if an outer cable jacket is cut, or water otherwise enters the cable structure, only a very small percentage of the cross-sectional area is open to water.

1,Water penetration refers to the effectiveness of cable in restricting the longitudinal movement of water or moisture along the core. This requirement is primarily intended to localise any water penetration to minimise the adverse effect on cable performance and to prevent water or moisture leaking into joints and terminations that may cause corrosion problems.
2,Additionally, cable installed underground should have a high density compound sheath material (such as poly ethylene) that provides an adequate barrier to moisture entry to the cable core. The addition of a lapped metal tape (‘moisture barrier’) and/or grease or gel within the core (‘filled’ or ‘flooded’ cable) provides even higher protection against moisture entry.

The above considerations is very important and should always be considered. Always refer to the manufacturers specification sheet and follow their installation instructions.

For the diverse requirements of our customer, we are involved in offering a wide assortment of waterproof cables. FiberStore offer these cables at very economical rates in the market. These cables are widely used and are highly demanded in the market due to their water proof nature. In addition to this, we offer these cables in various fiber optic cable specifications as per the requirements of our clients. We provide fiber optic cable products(such as duplex fiber cable,simplex fiber optic cable) are absolutely high quality and low price.

An Overview Of The Armored Fiber Cable


Fiber optic cables form one of the most important parts of the networking industry today. Fiber cables are composed of one or more transparent optical fibers enclosed in a protective covering and strength members. Fiber cables are used to transmit data by the mode of light. Various types of fiber cables available are multimode duplex fiber cables, single mode simplex fiber cables, single mode duplex fiber cables, armored fiber cables and plastic optical fiber cables.

What is Armored Fiber Cable

Armored Fiber Cable, is outside the optical fiber is then wrapped in a layer of protective of “armor”, is mainly used to meet the requirements of customers rodent, moisture proof, etc. Armored cable is a power cable made up by assembling two or more electrical conductors, generally held together with an overall sheath. This electrical cable with high protective covering is used for transmission of electrical power, especially for underground wiring needs. However, these cables may be installed as permanent wiring within buildings, buried in the ground, run overhead, or may even be kept exposed. They are available as single conductor cable as well as multi-conductor cables.

Common Armored Fiber Cable

Armored fiber optic cables are often installed in a network for added mechanical protection, as they have extra reinforcing in the cable housing to prevent damage. Two types of armored fiber optic cables exist: interlocking and corrugated. Interlocking armor is an aluminum armor that is helically wrapped around the cable and found in indoor and indoor/outdoor cables. It offers ruggedness and superior crush resistance. Corrugated armor is a coated steel tape folded around the cable longitudinally. It is found in outdoor cables and offers extra mechanical and rodent protection.

Armored Flame Retardant Fiber Optic Cable for Indoor/Outdoor Applications

Indoor/outdoor fiber optic cables have been pretty hot in the last several years and there are good reasons for this. For service providers, indoor/outdoor fiber cables really present big time and cost savings. This cable design can come from the outdoor environment and enter a building without the need to switch cable designs to have the flame retardance required indoors. This dual purpose cable can reduce the cost of the terminations and related labor to change cable designs.

The development of dry water blocking core technology has also helped indoor/outdoor fiber cable development. This dry core technology uses water swellable materials to block the flow of moisture in the longitudinal direction.We also provide other types of fiber optic cable,such as the waterproof cable,waterproof fiber pigtail cable can be used in harsh environment. It is mainly used in outdoor connection of the optical transmitter. Waterproof fiber pigtail is designed with a stainless steel strengthened waterproof unit and armored outdoor PE jacketed cables.

Note:If you want to know more detail fiber optic cable specifications of armored fiber cable,you can visit the armored fiber cable products website in FiberStore.Every fiber optic cables have the different specifications,and if you have some questions of fiber optic cable specifications,pls contact us.