Tag Archives: fiber optic patch cable

6 Steps Help to Choose Right Fiber Patch Cord Types


There are many fiber patch cord types, such as OM1, OM2, OM3, OM4 multimode fiber and OS2 single mode fiber types. Both ends of the cable are terminated with a high performance hybrid or single type connector comprising of a SC, ST, FC, LC, MTRJ, E2000 connector in simplex and duplex. These are typically not ruggedized, depending on the application, making them suitable for internal use. How to choose right fiber patch cord types for your network? Just follow these 6 steps.

Step 1: Choose the Right Connector Type (LC/SC/ST/FC/MPO/MTP)

Different fiber patch cord typesOn both ends of the fiber optic patch cord are terminated with a fiber optic connector (LC/SC/ST/FC/MPO/MTP). Different connector is used to plug into different device. If ports in the both ends devices are the same, we can use such as LC-LC/SC-SC/MPO-MPO patch cables. If you want to connect different ports type devices, LC-SC/LC-ST/LC-FC patch cables may suit you.

LC SC ST FC MPO MTP fiber optic patcah cable

Step 2: Choose Single-mode or Multimode Cable Type?
Single-mode fiber patch cord uses 9/125um glass fiber, Multimode fiber patch cord uses 50/125um or 62.5/125um glass fiber. Single-mode fiber optic patch cord is used in long distance data transmission. multimode fiber optic patch cord is use in short distance transmission. Typical single-mode fiber optic patch cord used yellow fiber cable and multi mode fiber optic patch cord used orange or aqua fiber cable.

single-mode multimode fiber optic patch cable

Step 3: Fiber Patch Cord Types – Choose Simplex or Duplex?
Simplex means this fiber patch cable is with one cord, at each end is only one fiber connector, which is used for Bidirectional (BIDI) fiber optic transceivers. Duplex can be regarded as two fiber patch cable put side by side, which is used for common transceivers.

simplex duplex fiber optic patch cable

Step 4: Choose the Right Cable Length (1m/5m/10m/20m/30m/50m)
Fiber optic patch cables are made in different lengths, usually from 0.5m to 50m. You should choose an appropriate cable length according to the distance between the devices you want to connect.

Step 5: Choose the Right Connector Polish Type (UPC/APC)
Since the loss of the APC connector is lower than UPC connectors, usually, the optical performance of APC connectors is better than UPC connectors. In the current market, the APC connectors are widely used in applications such as FTTx, passive optical network (PON) and wavelength-division multiplexing (WDM) that are more sensitive to return loss. But APC connector is usually expensive than UPC connector, so you should weigh the pros and cons. With those applications that call for high precision optical fiber signaling, APC should be the first consideration, but less sensitive digital systems will perform equally well using UPC. Usually, connector color of APC patch cable is green, and of UPC patch cable is blue.

UPC APC fiber optic patch cable

Step6: Choose the Right Cable Jacket Type (PVC/LSZH/OFNP/Armored)
Usually, there are three cable jacket types: Polyvinyl Chloride (PVC), Low Smoke Zero Halogen (LSZH) and Optical Fiber Nonconductive Plenum (OFNP). You can see there features in figure below and choose the right one for your network.

PVC LSZH OFNP Fiber Optic Patch Cable
Besides the three cables mentioned above, there is another common cable—Armored Cable. The double tubing and steel sleeve construction make these patch cables completely light tight, even when bent. These cables can withstand high crushing pressures, making them suitable for running along floors and other areas where they may be stepped on. The tubing also provides excellent cutting resistance, abrasion resistance, and high tensile strength.

Armored Fiber Optic Patch Cable

FS.COM provides all kinds of fiber optic patch cables to meet demands of various customers!

Related Article:

 Common Types of Fiber Patch Cables

What Kind of Fiber Patch Cord Should I Choose?

Which SFP Fiber Cable Should I Choose for My Optical Transceiver?


SFP fiber cable and fiber optic transceiver have become more and more important in fiber optic data transmission, especially in data transmission between the switches and equipment. But with so many different kinds of SFP fiber cables available in the market, which one is suitable for may optical transceiers? This article may on this issue to provide some solutions. Before starting this topic, it is necessary for us to review the basic knowledge of the fiber optic transceiver and fiber optic cable.

Fiber Optic Transceiver Overview
Fiber Optic Transceiver is a self-contained component that can both transmit and receive. Usually, it is inserted in devices such as switches, routers or network interface cards which provide one or more transceiver module slot. There are many optical transceivers types, such as SFP+ transceiver, X2 transceiver, XENPAK transceiver, XFP transceiver, SFP (Mini GBIC) transceiver, GBIC transceiver and so on.

Fiber Optic Transceiver

Fiber Optic Patch Cable Overview
Fiber optic patch cable, also known as fiber jumper or fiber optic patch cord. It is composed of a fiber optic cable terminated with different connectors on the ends. Fiber optic patch cables are used in two major application areas: computer work station to outlet and patch panels or optical cross connect distribution center. According to fiber cable mode, cable structure or connector types etc., fiber patch cable can be divided into different types.

SFP Fiber Cable

1.Single-mode and Multimode SFP fiber Cable
According cable mode, patch cables can be divided into single-mode and multimode fiber patch cable. The word mode means the transmitting mode of the fiber optic light in the fiber optic cable core. Single-mode patch cables are with 9/125 fiber glass and are yellow jacket color, while multimode patch cables are with OM1 62.5/125 or OM2 50/125 fiber glass and are orange color. In addition, there is 10G OM3 and OM4 multimode patch cables which cable jacket are usually aqua.

2.Simplex and Duplex SFP fiber Cable
Simplex fiber patch cable is consist of single fiber core, while duplex fiber patch cable is consist of two fiber cores and can be either singlemode or multimode. Additionally, there is also ribbon fan-out cable assembly (ie. one end is ribbon fiber with multi fibers and one ribbon fiber connector such as MTP connector (12 fibers), the other end is multi simplex fiber cables with connectors such as ST, SC, LC, etc.).

3.LC, SC, ST, FC, MT-RJ, E2000, MU and MPO/MTP Patch Cable
Fiber optic patch cable can be also classified by the types of fiber optic connector. For example, LC fiber optic patch cable is named as it is with LC connector. Similarly, there are SC, ST, FC, MT-RJ, E2000, MU and MPO/MTP fiber optic patch cables. What’s more, there are PC, UPC, APC type fiber patch cords, which are differentiated from the polish of fiber connectors.

Which SFP fiber Cable Should I Choose for My Fiber Optic Transceivers?
Now, I will take the Cisco fiber optic transceiver as an example to discuss this topic. For example, we need to choose a right patch cable to connect Cisco fiber optic transceiver SFP-10G-SR and X2-10GB-SR. Which patch cable to use? According to “Cisco 10-Gigabit Ethernet Transceiver Modules Compatibility Matrix”, we may know that SFP-10G-SR is the 10GBASE-SR SFP+ transceiver module for MMF, 850-nm wavelength, LC duplex connector. And X2-10GB-SR is the 10GBASE-SR X2 transceiver module for MMF, 850-nm wavelength, SC duplex connector. Obviously, this two knids of optica trancseivers are both for MMF, so we should choose a multimode patch cable. Besides, we know X2-10GB-SR is designed for SC duplex connector and the SFP-10G-SR is designed for duplex LC connector, so we should use a patch cable with SC-LC duplex connector.

Which Patch Cable Should I Choose for My Fiber Optic Transceivers

The Most Common Used SFP fiber Cable Selection
In the way mentioned above, you could choose right fiber patch cable for your other transceiver modules. Keep in mind that if your transceiver modules are not Cisco’s, you need to ask your brand supplier to get the corresponding compatibility matrix. In fact, in terms of a same kind of optical transceiver, different supplier may provide the transceiver with different specifications. Here I may list the most common used patch cables selection. Hope to give you smoe reference.

Fiber optic patch cable Applicable fiber optic transceiver connection
LC-LC Simplex 9/125 Single-mode Fiber Patch Cable 1.25Gbps 1310nmTX/1490nmRX BiDi SFP

10GBASE 1270nmTX/1330nmRX BiDi SFP+

LC-LC Duplex 9/125 Single-mode Fiber Patch Cable 1000Base-LX/LH 1310nm 10km LC SMF SFP
LC-SC Duplex 9/125 Single-mode Fiber Patch Cable Cisco X2-10GB-LR , Cisco XENPAK-10GB-LR and Cisco SFP-10G-LR
SC-LC Duplex 10G OM4 50/125 Multimode Fiber Patch Cable Cisco XENPAK-10GB-SR , Cisco X2-10GB-SR and Cisco SFP-10G-SR
LC-LC Duplex OM1 62.5/125 Multimode Fiber Patch Cable 100Base-FX 2km 1310nm MMF LC SFP
LC-LC Duplex OM2 50/125 Multimode Fiber Patch Cable 1000Base-SX 850nm 550m LC MMF SFP
LC-LC Duplex 10G OM3 50/125 Multimode Fiber Patch Cable 10GBASE-SR 850nm 300m Multi-Mode SFP+
LC-LC Duplex 10G OM4 50/125 Multimode Fiber Patch Cable Cisco SFP-10G-SR Compatible 10GBASE-SR SFP+

Related Article: Differences Between SFP, BiDi SFP and Compact SFP

Related Article: Cisco SFP-10G-SR: All You Need to Know

What’s the Difference Between UPC and APC Connector?


We usually hear about descriptions like “LC/UPC multimode duplex fiber optic patch cable”, or “ST/APC single-mode simplex fiber optic jumper”. What do these words UPC and APC connector mean? What’s the difference between them? This article may give some explanations to you.

What’s the Meaning of UPC and APC?

As we know, fiber optic cable assemblies are mainly with connectors and cables, so the fiber cable assembly name is related to the connector name. We call a cable LC fiber patch cable, because this cable is with LC fiber optic connector. Here the words UPC and APC are related only to the fiber optic connectors and have nothing to do with fiber optic cables.

Whenever a connector is installed on the end of fiber, loss is incurred. Some of this light loss is reflected directly back down the fiber towards the light source that generated it. These back reflections will damage the laser light sources and also disrupt the transmitted signal. To reduce back reflections, we can polish connector ferrules to different finishes. There are four types of connector ferrule polishing style in all. UPC and APC are two types of them. Among UPC stands for Ultra Physical Contact and APC is short for Angled Physical Contact.

Differences Between UPC and APC Connector

The main difference between UPC and APC connector is the fiber end face. UPC connectors are polished with no angle, but APC connectors feature a fiber end face that is polished at an 8-degree angle. With UPC connectors, any reflected light is reflected straight back towards the light source. However, the angled end face of the APC connector causes reflected light to reflect at an angle into the cladding versus straight back toward the source. This causes some differences in return loss. Therefore, UPC connector is usually required to have at least -50dB return loss or higher, while APC connector return loss should be -60dB or higher. In general, the higher the return loss the better the performance of the mating of two connectors. Besides the fiber end face, another more obvious difference is the color. Generally, UPC connectors are blue while APC connectors are green. The following figure picture shows the differences mentioned above intuitively.

UPC and APC Connector

Application Considerations of UPC and APC Connectors

There is no doubt that the optical performance of APC connectors is better than UPC connectors. In the current market, the APC connectors are widely used in applications such as FTTx, passive optical network (PON) and wavelength-division multiplexing (WDM) that are more sensitive to return loss. But besides optical performance, the cost and simplicity also should be taken into consideration. So it’s hard to say that one connector beats the other. In fact, whether you choose UPC or APC will depend on your particular need. With those applications that call for high precision optical fiber signaling, APC should be the first consideration, but less sensitive digital systems will perform equally well using UPC.

Fiberstore offers a variety of high speed fiber optic patch cables with LC, SC, ST, FC etc. connectors (UPC and APC polish). For more information about UPC and APC fiber optic connectors, please visit fs.com.

Related Article: 6 Steps Help to Choose Right Fiber Optic Patch Cable

Related Article: LC Fiber Connector, Adapter and Cable Assemblies

The LC Connector in Fiber Management and Transceivers


The LC connector system, standardized as TIA/EIA FOCIS-10, was designed specifically to address the needs of increasing network interconnect density.

In the past, fiber management systems (for D4, ST, FC and Biconic),have required twice as many individual connectors as copper systems, hence, crowding racks and closets (Fig. 2) with additional patch bays, management hardware and line terminating electronics. SFF connectors have either a unitary body design (FJ and MT-RJ) or a provision for clipping simplex connectors together to form a single SFF end (LC).

The LC connector provides the potential for twice the interconnect density in closets and racks when compared to a SC connector. Although, there is a point at which additional density cannot be utilized because of the difficulty in fiber routing inordinately large cable counts. Also at issue in these higher density racks, is the problem of disturbing adjacent circuits in MACs. Most important in fiber management, is the decreased footprint of the LC on electronics (hubs, switches, etc.) for fiber transceivers.

SFF Connector, SFP Transceivers and the march towards 10Gb/s Enterprise Networking

Original SFF transceivers (GBICs) on equipment have now been overshadowed by the SFP (“pluggable”versions of the SFF) transceiver. Equipment vendors are starting to offer SFP on switches/NICs for Gb/s Ethernet. The optical receptacle on the SFP for Fibre Channel and Gb/s Ethernet is the LC connector. Most major transceiver vendors, including early proponents of “MT-RJ-only” transceivers, now sell SFPs with the LC interface only.

On 200 pin XenPAK transceivers, only SFF options are specified in the Multi Source Agreement (MSA). Vendors have offered XenPAK with both SC and LC pigtails, but the majority offers “LC only” XenPAK product lines. The LC is also used in competing transceivers such as XenPAK, X2 and XFP.

LC Market Acceptance

The LC is the market leader in SFF connectors. Press releases from the major vendors of LCs (Lucent) and MT-RJs (Tyco/AMP) in similar time frames (mid 01) indicate unit volumes of 20 million and 3 million respectively.

According to the Fiber Optic Connector/Mechanical Splice Global Market Report by Electronicast, the North American Market for private network use of SFF connectors is expanding quite rapidly. In this report, the multimode LC is estimated to grow at double the rate of that of the multimode MT-RJ (Table 1). The difference embedded in the Electronicast data is the creation of new installations (LC) versus the support of existing facilities (MT-RJ).

The multimode MT-RJ found early support in 100BASE-F applications. In spite of this, the LC is becoming the optoelectronics interconnect solution for 1-10Gb/s applications. The emerging 10Gb/s market has forced transceiver vendors to evolve toward pluggable designs with the LC as the primary choice of interconnect.

The LC connector patch cable have LC to LC, LC to MT-RJ, LC to SC, LC ST fiber patch cable .  The LC fiber optic patch cable is with a small form factor (SFF) connector and is ideal for high density applications. The LC fiber patch connector has a zirconia ceramic ferrule measuring 1.25mm O.D. with either a PC or APC end face, and provides optimum insertion and return loss. The LC fiber patch cable connector is used on small diameter mini-cordage (1.6mm/2.0mm) as well as 3.0mm cable. LC fiber cable connectors are available in cable assembled or one piece connectors. The LC fiber optic assemblies family is Telcordia, ANSI/EIA/TIA and IEC compliant.

lc fiber optic patch cable

We offer LC fiber cables and LC fiber patch, including single mode 9/125 and multimode 50/125, multimode 62.5/125, LC-LC, LC-SC, LC-ST, LC-MU, LC-MTRJ, LC-MPO, LC-MTP, LC-FC, OM1, OM2, OM3. Other types also available for custom design. Excellent quality and fast delivery.

Talk about LC connector, the common connector type we have seen, there are FC connector, SC connector, ST connector, ect. The following is some connector type features.

FC: A metal screw on connector, with a 2.5mm ferrule, developed by NTT. The ruggedness of this connector leads to its extensive use at the interfaces of test equipment. It is also the most common connector used for PM, polarization maintaining, connections. Please note that there are currently four different specifications for the key width on FC connectors and for the slot width on FC adapters. Therefore not all FC connectors will fit into all FC adapters.

LC: As mall form factor plastic push/pull connector, with a 1.25mm ferrule, developed by Lucent. The LC has been referred to as a miniature SC Connector. It is mainly used in the United States.

MTP: A push/pull ribbon connector, which holds up to 12 fibers. The 12-fiber capacity allows for very dense packing of fibers and a reduction in the number of connectors required.

SC: A plastic push-pull connector, with a 2.5mm ferrule, developed by NTT. Push-pull connectors require less space in patch panels than screw on connectors. The SC is the second most commonly used connector for PM, polarization maintaining, connections.

ST: A metal bayonet coupled connector, with a 2.5mm ferrule, developed by AT&T. The ferrule moves as load is applied to the cable in this aging design. There is a version of the ST, which the Navy uses extensively, where the ferrule does not move as a load is applied to the cable.

Fiberstore has a global reputation for bringing best-in-class technology and design concepts to the marketplace. Added to close customer relationships, decades of experience in the industry and outstanding service and support, make Fiberstore the right choice for fiber optic components and systems that will splice your fiber optic components together. We offer fiber optic patch cable, fiber optic cable, fiber optic transceivers, ect. In particular, Fiberstore products include optical subsystems used in fiber-to-the-premise, or FTTP, deployments which many telecommunication service providers are using to deliver video, voice, and data services.

Related Article:  Which Patch Cable Should I Choose for My Optical Transceiver?

Small Form Factor Fiber-Optic Connectors


One of the more popular styles of fiber-optic connectors is the small form factor (SFF) style of connector. SFF connectors allow more fiber optic terminations in the same amount of space over their standard-sized counterparts. The two most popular are the mechanical transfer registered jack (MT-RJ or MTRJ), designed by AMP, and the Local Connector (LC), designed by Lucent.


The MT-RJ fiber optic connector was the first small form factor fiber optic connector to see widespread use. It is one-third the size of the SC and ST connectors it msot often replaces. It had the following benefits:

● Small size
● TX and RX strands in one connector
● Keyed for single polarity
● Pre-terminated ends that require no polishing or epoxy
● Easy to use


Local Connector is a newer style of SFF fiber optic connector that is overtaking MT-RJ as fiber optic connector. It is especially popular for use which Fiber Channel adapters and Gigabit Ethernet adapters. It has similar advantages to MT-RJ and other SFF-type connectors but is easier to terminate. It uses a ceramic insert as standard-sized fiber-optic connectors do. Figure 1.21 shows an example of the LC connector. Mentioned fiber optic connector, we know fiber optic patch cords, a fiber optic patch cord is constructed from a core with a high refractive index, surrounded by a coating with a low refractive index that is surrounded by a protective jacket. Transparency of the core permits transmission of optic signals with little loss over great distances. The coating’s low refractive index reflects light back into the core, minimizing signal loss. The protective jacket minimizes physical damage to the core and coating.

Connector design standards include FC, SC, ST, LC, MTRJ, MPO, MU, SMA, FDDI, E2000, DIN4, and D4. Cables are classified by the connectors on either end of the cable; some of the most common cable configurations include FC-FC, FC-SC, FC-LC, FC-ST, SC-SC, and SC-ST.

lc to lc fiber patch cord is used to send high-speed data transmissions throughout your network. LC/LC fiber optic cables connect two components with fiber optic connectors. A light signal is transmitted so there is no outside electrical interference. Our LC/LC fiber optic patch cables are 100% optically tested for maximum performance. We have all lengths and connectors available.

Multimode LC/LC fiber optic patch cable send multiple light signals. They are 62.5/125µ. Common connectors are ST, LC, SC and MTRJ. Our 62.5/125µ LC/LC multi-mode fiber cables can support gigabit ethernet over distances up to 275 meters.

Cable Type Summary


Fiber optic patch cables are used for linking the equipment and components ,we have fiber optic patch cable with different fiber connector types,our low insertion loss and low back reflection .Axen Technologies fiber patch cable is widely applied in Telecommunication Networks ,Gigabit Ethernet and Premise Installations.

Related Article:  Which Patch Cable Should I Choose for My Optical Transceiver?

Twisted Pair Cable Plant Components


Twisted pair cable (Cat5e/Cat6/Cat7 cable, etc.) is good for transferring balanced differential signals. The practice of transmitting signals differentially dates back to the early days of telegraph and radio. The advantages of improved signal-to-noise ratio, crosstalk, and ground bounce that balanced signal transmission bring are particularly valuable in wide bandwidth and high fidelity systems. By transmitting signals along with a 180 degree out-of-phase complement, emissions and ground currents are theoretically canceled. This eases the requirements on the ground and shield compared to single ended transmission and results in improved EMI performance.

Normally, a twisted pair cable plant requires more than just the cabling, it needs other important components as well. Listed below are the most common five components you should know about to work with the twisted pair cable.

Five Common Twisted Pair Cable Plant Components

● RJ-45 Connectors: Whether STP or UTP, most twisted-pair cabling uses registered jack 45 (RJ-45) connectors to plug into network interfaces or other networked devices. This connector looks much like the RJ-11 connector on modular phone jacks, but it’s larger and contains eight wire traces rather than the four or six in an RJ-11. An RJ-45 connector, often called an RJ-45 plug, is most commonly used in patch cables (Cat6 cable, Cat6a cable, Cat7 cable, etc.), which are used to connect computers to hubs and switches and computers to RJ-45 wall jacks.

RJ45 Connector For Twisted Pair Cable

● Patch Cable: A patch cable (Cat5e cable, for example) is a short cable for connecting a computer to an RJ-45 jack or connecting a patch-panel port to a switch or hub. Patch cables can be made with inexpensive tools, two RJ-45 plugs, and a length of TP cable. Although making a patch cable is easy, most network administrators prefer buying ready-made cables to save time.

patch cables

RJ-45 Jacks: An RJ-45 jack is what you plug an RJ-45 connector into when the computer is in a work area away from hubs and switches. It has a receptacle for an RJ-45 plug on one side and a place to terminate, or “punch down,” the TP cabling on the other side. RJ-45 jacks are usually placed behind wall plates when cables are run inside walls but can also be recessed into the floor or placed in surface-mounted boxes if the cabling runs on the outside of walls.

Patch Panel: Patch panels are used to terminate long runs of cable from the work area (where the computer are) to the wiring closet (where the switches and hubs are). Patch panels are like RJ-45 jacks, in that they have a receptacle on one end and punchdown terminals on the other, but a patch panel can usually accommodate 12, 24, or 45 cables.

● Distribution Racks: Distribution racks (also called 19-inch racks because the upright rails are 19 inches apart) hold network equipment, such as routers and switches, plus patch panels and rack-mounted servers. They’re usually found in wiring closets and equipment rooms.

 Related Articles: 

Which Patch Cable Should I Choose for My Optical Transceiver?

What’s the Difference Between Twisted Pair vs Coaxial Cable vs Fiber Optic

How to Install Twisted-Pair Cable Connectors?