Tag Archives: singlemode fiber

WBMMF – Next Generation Duplex Multimode Fiber in the Data Center

Share

Enterprise data center and cloud operators use multimode fiber for most of their deployments because it offers the lowest cost means of transporting high data rates for distances aligned with the needs of these environments. The connections typically run at 10G over a duplex multimode fiber pair—one transmit (Tx) fiber and one receive (Rx) fiber. Upgrading to 40G and 100G using MMF has traditionally required the use of parallel ribbons of fiber. While parallel transmission is simple and effective, continuation of this trend drives higher cost into the cabling system. However, a new generation of multimode fiber called WBMMF (wideband multimode fiber) is on the way, which can enable transmission of 40G or 100G over a single pair of fibers rather than the four or ten pairs used today. Now, let’s get close to WBMMF.

What Is Wideband Multimode Fiber?
WBMMF is a new multimode fiber type under development that will extend the ability of conventional OM4 fiber to support multiple wavelengths. Unlike traditional multimode fiber, which supports transmission at the single wavelength of 850 nm, WBMMF will support traffic over a range of wavelengths from 850 to 950 nm. This capability will enable multiple lanes of traffic over the same strand of fiber to transmit 40G and 100G over a single pair of fibers and to drastically increase the capacity of parallel-fiber infrastructure, opening the door to 4-pair 400GE and terabit applications. Multimode fiber continues to provide the most cost-effective platform for high bandwidth connectivity in the data center, and with the launch of the WBMMF solution, that platform has been extended to support higher speeds with fewer fibers and at greater distances.

Wideband Multimode Fiber

What Is the Technology Behind WBMMF?
WBMMF uses short wavelength division multiplexing (SWDM) to significantly increase its transmission capacity by four times. WDM technology is well known for its use in single-mode transmission, but has only recently been adapted for use with vertical cavity surface-emitting lasers (VCSELs), which have been proven in high-speed optical communications and are widely deployed in 10G interconnection applications. SWDM multiplexes different wavelengths onto duplex MMF utilizing WDM VCSEL technology. By simultaneously transmitting four VCSELs, each operating at a slightly different wavelength, a single pair WBMMF can reliably transfer 40G (4x10G) or 100G (4x25G). The use of SWDM then enables WBMMF to maintain the cost advantage of multimode fiber systems over single mode fiber in short links and greatly increases the total link capacity in a multimode fiber link.

SWDM WBMMF

Why Does WBMMF Make Sense?
In order to increase transmission speeds up to 10G or 25G, transceiver vendors simply increased the speed of their devices. When 40G and 100G standards were developed, transmission schemes that used parallel fibers were introduced. This increase in fiber count provided a simple solution to limitations of the technology available at the time. It was accepted in the industry and allowed multimode links to maintain a low cost advantage. However, the fiber count increase was not without issues. At some point, simply increasing the number of fibers for each new speed became unreasonable, in part because the cable management of parallel fiber solutions, combined with the increasing number of links in a data center, becomes very challenging. Please see the picture below. Usually, 40G is implemented using eight of the twelve fibers in an MPO connector. Four of these eight fibers are used to transmit while the other four are used to receive. Each Tx/Rx pair is operating at 10G. But if we use WDMMF, two fibers are enough. Each Tx/Rx pair can transmit 40G by simultaneously transmitting four different wavelengths. This enables at least a four-fold reduction in the number of fibers for a given data rate, which provides a cost-effective cabling solution for data center.

Parallel fibers vs WBMMF

Conclusion
WBMMF is born at the right moment to meet the challenges associated with escalating data rates and the ongoing need to build cost-effective infrastructure. Besides, WBMMF will support existing OM4 applications to the same link distance. Optimized to support wavelengths in the 850 nm to 950 nm range to take advantage of SWDM, WBMMF ensures not only more efficient support for future applications to useful distances, but also complete compatibility with legacy applications, making it an ideal universal medium that supports not only the applications of the present, but also those of the future.

Related Article: OM5 Multimode Fiber FAQs

The Specific Instructions of Optical Fiber Patch Cord

Share

Optical fiber communication refers to modulate voice, video and data signals to the fiber patch cord as a communication transmission medium. The optical fiber can be divided into multimode fiber and single mode fiber.

Single Mode Fiber Patch Cord

The central glass core of single mode fiber is fine (core diameter is usually 9 or 10μm), it only can transfer one mode light. The mode dispersion is small, and it is for remote communication, but it plays a major role in the chromatic dispersion so that the spectral width of the single mode fiber has a higher light stability and the requirement that the spectral width is narrower and better stability. 1000 Mb/s fiber optic transmission distance is 550m-100km. As we all know, we commonly see 9/125μm single mode optical fiber in the market. And single mode 9/125um fiber optic patch cables are recommended for Fast, Gigabit, 10G Ethernet or SONET OC3-OC192 rate optical connections. Low prices make the 9/125um fiber attractive for in-building projects too, because of the reliability and choice of using a single-strand of fiber for same communications (simplex cords are used on Bi-Directional data links).

Multimode Fiber Patch Cord

The central glass core of Multimode fiber is coarse (50 or 62.5μm), multiple modes of light can pass. However, its mode dispersion is among large, which limits the frequency of the transmitted digital signal, and with the increase in distance will be more severe. Multi-mode fiber transmission distance is relatively recent, generally only a few kilometers. 1000 Mb/s fiber optic transmission distance is 220m-550m. In general, we can find 62.5/125um Multi-mode fiber optic cable in the market. 62.5/125um multimode fiber cables are recommended for Fast Ethernet and up to OC3/STM1 rate optical connections. They can also be used for Gigabit Ethernet multi-mode connections on distances less than 275 meters. 62.5/125um fiber is most used inside buildings.

Types of Fiber Patch Cord

In the network wiring, the more applications optic fiber has three types, there are 62.5μm/125μm multimode fiber, 50μm/125μm multimode fiber, and 9μm/125μm single mode fiber. According to the rate and transmission distance, we can distinguish and choose single/multimode optic fiber. Tied the fiber bundle, outside has the protective housing, which is called fiber cable. According to different application environments, the cable can be divided into indoor and outdoor fiber optic cable.

Fiber refers that the fiber jumper with a desktop computer or device connected directly to facilitate the connection and manage the device. Fiber jumpers are also divided into two multimode and single-mode, which are connected with single mode and multimode fiber. Jumper for an active connection cable between the two devices without connectors (as distinguished: patch (patch cord) is one or both ends with connectors; jumper is at both ends of the cable has a fiber optic connectors, the device can be directly connected, but only one end of the fiber pigtail connector and the other end to the fiber splicing).

Fiber Patch Cord Connector Types

Fiber patch cord connector shape can be divided into FC, SC, ST, LC, etc. According TO ferrule grinding mode, it can be divided into PC (plane), UPC (spherical surface), APC (8 degrees inclined plane ) and other (cable optical transceiver general requirements FC / APC connector). According to the type of optical fiber, it can be divided into the single mode optical fiber, 50/125 multimode, 62.5/125 multimode and Gigabit, etc. According to the optical fiber connetor, we commonly see LC, SC fiber patch cord in the market,  the following products are LC-SC fiber in our online store, if you have interest, you can go to our store to have a see.

LC SC Fiber patch cord

Fiber patch cord products are widely applied, it applies in the communications room, fiber to the home, local area networks, fiber optic sensors, fiber optic communication systems, fiber optic transmission equipment connected, defense readiness and so on. Apply to cable television, telecommunications networks, computer networks and optical fiber test equipment. Broken down mainly used in several ways.

OM3 Multimode 10G Aqua Fiber Optic Cables

Share

The Internet, telephone calls, and cable television all transmit information that can pass through fiber optic cables. Imagine having all this information at lightning-fast speed with less signal disturbances. The mechanics that lie beneath the ingenious work of fiber optic cables rests simply with the fact that light travels faster than electricity with fewer disturbances. The end result? Fiber optic cables provide a quicker and clearer transmission of data. Designed for optimal performance, our fiber optic cables allow you to enjoy the best quality technological experiences possible.

Now, many fibre optic cable suppliers provide a full range of bulk fiber optic cable. Including om3 fiber optic cable, om4 multimode fiber, armored fiber cable, simplex fiber optic cable, multimode duplex fiber optic cable and so on. Today, I will recommended the OM3 fiber optic cable in this blog. Know more OM3 fiber optic cable info and how to choose it.

OM3 10G fiber optic cables are used for 10Gigabit Ethernet applications. These cables are also called multimode OM3 10G Aqua fiber optic cables. Our OM3 10G cables come in various types including different connector types, cable structure and cable length. Our OM3 multimode fiber that are compliant to ISO/IEC 11801 standards. These cables are used for 10Gbps networks to meet the requirement of continuous growing of high data rates.

Big quantity information is generated every day on the internet and people need to exchange more and more information which in turn result in the demand of more and more bandwidth. IEEE802.3ae defined the 10Gigabit Ethernet standards used in LANs. OM3 10G multimode fiber optic cables are developed for such 10Gig Ethernet applications, they are with so called OM3 optical fiber, which is 50/125 type and with industrial acknowledged Aqua color. In FiberStore, we supply the OM3 cable standard color is aqua, but we also supply the customized color service,such as black, blue, orange, green, brown, slate, white, red, yellow, purple, rose, aqua or custom specified. We provide many types of OM3 products, including various kinds of OM3 fiber cable assemblies with various connectors like SC, ST , FC, LC, MTRJ, etc.

OTHER INFO: Which optical fiber should I choose, 50 micron or 62.5 micron?

Although 62.5 micron fiber was the most popular only a few years ago, 50 micron quickly gained market share and is continuing to do so. 50 micron fiber can have up to 20 times the bandwidth (data throughput capacity) of 62.5 micron. For identification purposes, multimode fiber, and also singlemode fiber, is often referred to by its performance level identified by ISO/IEC (International Organization of Standards and International Electrotechnical Committee), which is based on the fibers bandwidth capabilities. 62.5 micron multimode is referred to as OM1. 50 micron fiber is referred to as OM2, OM3 and the recently added OM4. As you would imagine, OM4 has greater bandwidth than OM3 and OM3 has greater bandwidth than OM2.

Fifty micron OM3 fiber is designed to accommodate 10 Gigabit Ethernet up to 300 meters, and OM4 can accommodate it up to 550 meters. Therefore, many users are now choosing OM3 and OM4 over the other glass types. In fact, nearly 80% of 50 micron fiber sold is OM3 or OM4.

If you require higher data rates or plan on upgrading your network in the near future, laser optimized 50 micron (OM3 or OM4) would be the logical choice.

We also supply 10Gig multimode fiber optic cables with various optional structures, such as om3 multimode fiber, om4 multimode fiber, multimode duplex fiber optic cable and so on. Our  fiber optic cables are manufactured according to industrial standards and they feature the good price and reliable quality. Per foot price of each fiber cable is flexible depending on the quantities of your order, making your cost of large order unexpected lower. Customers can also have the flexibility to custom the cable plant to best fit their needs. Only fiber cable that meets or exceeds industry standards is used to ensure quality products with best-in-class performance.FiberStore is a your best buy fiber optic cable place.