Tag Archives: Single Mode Fiber Cable

Three Common Types Of Fiber Optic Cable

Share

There are three common types of fiber optic cables , as listed below. The suitability of each type for a particular application depends on the fiber optic cable’s characteristics.

The single mode fiber optic cable, sometimes called a single-mode fiber cable, is shown in Figure 1.5(a). The single and multimode step-index fiber cables are the simpplest types of fiber optic cables. Single-mode fiber cables have extremely small core diameters, ranging from 5 to 9.5 um. The core is surrounded by a standard cladding diameter of 125 um. The jacket is applied on the cladding to provide mechanical protection, as shown in Figure 1.3. Jackets are made of one type of polymer in different colours for colour-coding purposes. Single-mode fibers have the potential to carry signals for long distances with low loss, and are mainly used in communication systems. The number of modes that propagate in a single-mode fiber depends on the wavelength of light carried. The number of modes will be given in Equation (1.9). A wavelength of 980nm results in multimode operation. As the wavelength is increased, the fiber carries fewer and fewer modes until only one mode remains. Single-mode operation begins when the wavelength approaches the core diameter. At 1310 nm, for example, the fiber cable permits only one mode. It then operates as a single-mode fiber cable.

singlemode types of fiber optic cables

The multimode types of fiber optic cables, sometimes called a multimode fiber cable. Multimode fiber cables have bigger diameters that their single-mode counerparts, with core diameters ranging from 100 to 970 um. They are available as glass fibers (a glass core and glass cladding), plastic-clas silica (a glass core and plastic cladding), and plastic fibers (a plastic core and cladding). They are also the widest ranging, although not the most efficient in long distances, and they experience higher losses than the single-mode fiber cables. Multimode fiber cables have the potential to carry signals for moderate and long distance with low loss (when optical amplifiers are used to boost the signals to the required power). Plastic fiber optic cable is available in Fiberstore,  it is an optical fiber made out of plastic rather than traditional glass. It offers additional durability for uses in data communications, as well as decoration, illumination and industrial application. FiberStore provides both simplex and duplex plastic optical fibers.

Since light rays bounded through a fiber cable reflect at different angles for different ray pathc, the path lengths of different modes will aslo be different. Thus, different rays take a shorter or longer time to travel the lenth of the fiber cable. The ray that goes straight down the centre of the core without reflecting arrives at the other end faster. Other rays take slightly longer and thus arrive later. Accoringly, light rays entering a fiber at the same time will exit at the other end at different times. In time, the light will spread out because of the different modes. This is called modal dispersion. Dispersion describes the spreading of light rays by various mechanisms. Modal dispersion is that type of dispersion that results from the varying modal patch lengths in the fiber cable.

Multimode graded-index fiber are sometimes called graded-index fiber cables (GRIN). Graded-index and multimode fiber cables have similar diameters. Common graded-index fibers have core diameters of 50,62.5, or 85 um, with a cladding diameter of 125 um. The core consist of numerous concentric layers of glass, somewhat like the annular rings of a tree or a piece of onion. Each successive layer expanding outward from the central axis of the core until the inner diameter of the cladding has a lower index of refrection. Light travels faster in an optical material that has a lower index of refraction. Thus, the further the light is from the centre axis, the greater its speed. These types of fiber optic cable are popular in applications that require a wide range of wavelenths, in particular telecommunication, scanning, imaging, and data processing stystems. In particular telecommunication,  Multimode OM4 fiber optic cable is used in any data center looking for high speeds of 10G or even 40G or 100G. OM4 multimode fiber are ideal for using in many applications such as Local Area Networks (LAN) backbones, Storage Area Networks (SAN), Data Centers and Central Offices.

multimode fiber

You may have got some basics of types of fiber optic cables. Fiberstore provides a wide range of types of fiber optic cable with detailed specifications displayed for your convenient selecting. Per foot price of each fiber cable is flexible depending on the quantities of your order, making your cost of large order unexpected lower. Customers can also have the flexibility to custom the cable plant to best fit their needs.

Related Article: The Advantages and Disadvantages of Optical Fiber

Related Article: What Kind of Fiber Patch Cord Should I Choose?

FAQ In Fiber Optic Cabling

Share

Firstly, do choose multimode or single mode fiber? What is the difference between them?

In general, the user requests the fiber transmission distance is relatively short, such as a few hundred meters, can be Multimode Fiber Optic Cable. However, if the transmission distance has several kilometers, even further, without the use of signal repeaters must be single-mode fiber.

Secondly,  Do choose 4 core, 6 core, 8 core or more core Fiber Optic Patch Cables?

Fiber complete the transfer task, it must receive at least one first serve two core. In fact, there are 4,6,8 or more optical fiber core, the core can be used as extra backup, you can do more transmission channels.

Thirdly,  Does use wall or rack-mounted fiber optic patch panel cable box?

Wall fiber boxes are generally used in small fiber-optic network, for example, a 4-core optical fiber, but if there is more number of fiber optic, it shows the advantages of rack patch panel. It can be placed inside the routers and switches with a cabinet for easy centralized management and more secure.

And then, What is the connector type of FC,SC,ST,LC,MTRJ, and Which one can be choose?

These different interfaces have used in different environments, they differ mainly in the method and shape connection, is it the same as the screws tighten or direct card? Is square or round? Large or small mouth opening (mouth relatively large place occupied by a small mouth can have greater port density)? Two heads separately or synthetic one? Users need not be too concerned about the specific interface, to note that if the extension already exists in the case of older fiber optic systems, you have to match each job.

Finally, Is the choice of the center beam tube or Stranded cable?

Central tube Fiber Optic Cable placed in the center portion of the cable core, many of the core tube synthesis bunch shape, and the outer cable surrounding two wires placed in parallel to ensure tensile strength.

The central part of Stranded cable strengthen stereotypes core fiber. Fiber core surrounded by a peripheral that strengthen the core, many cores together to form the shape layer by layer.

How to identify fiber optic, is single mode or multimode fiber?

The first is a relatively simple method for indoor fiber, it can be identified by single-mode fiber and multimode fiber external color, Single Mode Fiber Cable is yellow, Multimode Fiber Optic Cable is red. Including Fiber optic patch cords and Fiber pigtails are the same recognition.

For MPO Fiber, generally can be identified by model code, there are a bunch of characters on the cable sheath, such GYXTW-4-A1a, the last paragraph begins with A on behalf of the multi-mode fiber, beginning with B represents a multi-mode fiber, a little more detail, A1a representing 50/125 multimode fiber specifications, A1b representatives 62.5/125 multimode fiber specifications, B1.1 representatives of non-dispersion shifted single-mode fiber and so on.

If this way can not be identified single mode fiber or multimode fiber, it is only through a special device to identify, as fiber splicing machine, it will automatically recognize the single mode or multimode fiber, single mode will show SM, multi-mode will show MM.

The Basic Knowledge of Optical Fiber and Pigtail

Share

How do fiber optic work?

Optical fiber communications composed of thin glass by the plastic protective overcoat layer. Glass essentially consists of two parts: the core diameter of 9 to 62.5μm, a low refractive index outer cladding diameter of 125μm glass material. Although according to the different materials
used, there are some other types of fiber, but is mentioned here that the most common types. Light in the core portion of the fiber to the “total internal reflection” mode transmission, but also refers to the light entering end of the fiber, the interface between the core and the cladding reflected back and forth, and then transmitted to the other end of the fiber. Core diameter of 62.5μm, outer cladding diameter of 125μm fiber called 62.5/125μm fiber.

What is the difference between multimode and single-mode fiber?

Multimode Fiber Optic Patch Cables

Almost all of the Multimode Fiber Optic Patch Cables dimensions are 50/125μm or 62.5/125μm, and the bandwidth (the amount of information transmission fiber) is usually 200MHz to 2GHz. Multimode optical transceiver via multimode fiber can be up to 5 km of transmission. In the light emitting diode or a laser light source.

Single Mode Fiber Cable

The size of Single Mode Fiber Cable 9-10/125μm, and compared with a multimode optical fiber, it has unlimited bandwidth and low loss characteristics. The single mode optical transceiver used for long-distance transmission, and sometimes up to 150-200 km. Using a narrow spectral line LD or LED as a light source.

Single mode fiber is cheap, but compared to multi mode fiber device, it is more expensive. Single-mode devices typically can run on single mode fiber, but also be run on a multi mode fiber, and multimode device only runs on multimode fiber.

How is the loss with using of the Fiber Optic Patch Cables?

It depends on the the wavelength of the transmitted light and the kind of optical fiber

When 850nm wavelengths for multimode fiber: 3.0 dB / km
When 1310nm wavelength for multimode fiber: 1.0 dB / km
When 1310nm wavelength for single mode fiber: 0.4 dB / km
When 1550nm wavelength for single mode fiber: 0.1 dB / km

Fiber Optic Pigtails

Fiber Optic Pigtails ony has one end connector, and the other end is an optical fiber core breakage, by fusion connected with other core cable, often appear in the fiber optic terminal box for connecting cable and fiber optic transceivers.

Fiber optic pigtails devide into multimode and singlemode fiber pigtails. Multimode fiber pigtail is orange and wavelength of 850nm, the transmission distance of 500m, for short-range connectivity. Single mode fiber pigtail is yellow, there are two wavelengths, 1310nm and 1550nm, transmission distance of 10km and 40km.

Fiber optic pigtail connector was devided into single mode and multimode by the mode of fiber optic cable; By overall structure can be divided into FC, SC, ST, MU, LC, F25, etc. By the end structures can be devided into PC、UPC、APC.

Here are some fiber optic pigtails products in fs.com, as shown in figure:

Multimode LC/SC/ST/FC Pigtail

Multimode LC/SC/ST/FC Pigtail

ingle-mode LC/SC/ST/FC Bunch Pigtail

Our fs.com provide wide degree flexibility on fiber pigtails, including 9/125 single-mode, 62.5/125 multimode 50/125 multimode and 10G 50/125um OM3 types, simplex fiber, 4 fibers, 6 fibers, 8 fibers, 12 fibers, 24 fibers, 48 fibers and so on.These fiber pigtails can be with fan-out kits and full compliant to Telcordia, EIA/TIA and IEC standards. Welcome to our store to know more information.