Category Archives: Single Mode Fiber (SMF)

Four Types Of Common Optic Components

Share

Optical components include lasers, splitters, multiplexers, switches, photodetectors and other receiver types,and other building blocks of fiber optic communications modules, line cards, and systems. FiberStore provide many types of optical components,such as fiber splitters,optical attenuator,fibre connector,fiber optic transceiver modules and so on. We will not regularly updated -product, tutorials, blog and other related information, sharing of information about fiber optic communication.

Common Optic Components:

The First,Fiber Splitters. The Fiber Optic Splitter, also named beam splitter, is based on a quartz substrate of integrated waveguide optical power distribution device, the same as coaxial cable transmission system, The optical network system also needs to be an optical signal coupled to the branch distribution, which requires the fiber optic splitter, Is one of the most important passive devices in the optical fiber link, is optical fiber tandem device with many input terminals and many output terminals, Especially applicable to a passive optical network (EPON, GPON, BPON, FTTX, FTTH etc.) to connect the MDF and the terminal equipment and to achieve the branching of the optical signal.

The Second,Optical Attenuator. The optical attenuator is a device used to reduce the power level of an optical signal, either in free space or in an optical fiber. The basic types of optical attenuators are fixed, step-wise variable, and continuously variable.Attenuators are commonly used in fiber optic communications, either to test power level margins by temporarily adding a calibrated amount of signal loss, or installed permanently to properly match transmitter and receiver levels.The most commonly used type is female to male plug type fiber optic attenuator, and it has the fiber connector at one side and the other side is a female type fiber optic adapter. The types of fiber optic attenuators are based on the types of connectors and attenuation level. FiberStore supply a lot of fiber optic attenuators, like FC, SC/APC, ST, PC, LC, UPC, MU, FC/APC, SC, LC/APC, fixed value plug type fiber attenuators with different attenuation level, from 1dB to 30dB.

The Third,Fibre Connector. Fibre connector is used to join optical fibers where a connect/disconnect capability is required. The basic connector unit is a connector assembly. A connector assembly consists of an adapter and two connector plugs.Optical fiber connector is removable activities between optical fiber and optical fiber connection device. It is to put the fiber of two surface precision docking, so that the optical output of optical energy to maximize the fiber optic coupler in receiving optical fiber, and optical link due to the intervention and to minimize the effects on the system, this is the basic requirement of fiber optic connector. To a certain extent, fiber optic connector also affects the fiber optic transmission reliability and the performance of the system.

The Fourth,Fiber Optic Transceiver Modules. Fiber optic transceiver is an important device in the optical fiber communication systems, which can be performed between the photoelectric signal conversion, with the receiving and transmitting functions. The fiber optic module is typically composed by the optoelectronic devices, the functional circuit and the optical interface, the optoelectronic device includes a transmitter and receiver in two parts.Usually, it is inserted in devices such as routers or network interface cards which provide one or more transceiver module slot (e.g GBIC, SFP, XFP).

For more information about fiber optic component,pls focus on www.fs.com, we will not regularly updated product, tutorials, blog and other related optical component information.

Choose The LC Fiber Patch Cables

Share

:: A Small History of LC Connectors

The LC connector was  a evolutionary approach to experiencing this goals of SFF (Small Form Factor) connector. The LC connector utilizes the traditional aspects of a SC duplex connector having independent ceramic ferrules and housings with the overall size scaled down by one half.

The LC family of connectors includes a stand-alone simplex design, a behind-the-wall (BTW) connector, and also the duplex connector available in both single mode and multimode tolerances, all designed while using RJ-style latch.

The LC connector is a universal connector. It is available in simplex and duplex configurations and is half how big the SC and utilizes a 1.25mm ferule. The LC is highly favored for single mode and is easily terminated with an adhesive. They’re actively replacing the SC connectors in corporate environments due to their smaller size.

:: The Most Critical Parameters You Should Be Looking

Many manufacturers make LC optic fiber patch cables, but they are not all created equal. Here are the most critical optical performance parameters you should be looking closely. This fiber optic cable manufacturer provide the detail fiber optic cable specifications, you can reference its specs.

A) Single mode LC optic fiber patch cables

Single mode LC patch cords is available in several polishing favors: PC, UPC and APC.

a) PC means Physical Contact.

This is the most basic polishing. The back reflection is not too good, especially for just one mode fiber system. The rear reflection is under -45dB. Since single mode fiber systems are particularly sensitive to back reflections, we don’t recommend using PC polish. It is best to choose a UPC polish for single mode LC fibers.

b) UPC stands for Ultra Physical Contact.

It supplies a better back reflection performance: under -50dB. While not providing the superior optical return loss performance of the APC connector – UPC connector has return loss (back reflection) characteristics that are appropriate for intraplant serial video or data transmissions.

c) APC means Angled Physical Contact.

The endface is polished precisely in an 8-degree angle to the fiber cladding to ensure that most return loss is reflected into the cladding where it can’t hinder the transmitted signal or damage the laser source.

As an effect, APC connectors offer a superior RL performance of -65 dB. APC LC optic fiber patch cables are best for high bandwidth applications and long haul links because it provides the lowest return loss (RL) characteristics of connectors now available.

However, it is extremely hard to terminate an LC APC connector at 8 degrees with any consistent degree of success within the field.

B) Multimode LC fiber patch cables

Multimode LC optic fiber patch cords have only one sort of polishing: PC (Physical Contact) polishing.

However, there are at least three kinds of common multimode fibers to select from. 62.5/125um multimode fiber (also called OM1), 50/125um multimode fiber (also known as OM2), and 10Gig laser optimized 50/125um multimode fiber (also known as OM3 multimode fiber OR OM4 multimode fiber ).

Among multimode LC fiber patch cables, usually you only care about the insertion loss which needs to be no more than 0.3 to 0.5dB.

:: Which kind of LC Patch Cords Do you want?

LC fiber patch cables are available in a variety of configurations, such as LC to FC, LC to ST, LC to SC, LC to LC, LC to MTRJ, and many more. LC fibers can be found in simplex fiber cable and duplex fiber cable configurations.

Selecting The Appropriate Fiber Optic Cable

Share

Fiber optic cable has turned into a standard component in many contemporary cable infrastructures. Its immunity to electromagnetic interference (EMI) and radio frequency interference (RFI) turn it into a desirable cable medium. Its function to safeguard the fibers during its stallation and also the service lifetime. Its capability to transport signals for significant distances has also earned it a place in many networks, whether they are local, wide area or metropolitan. In reality, fiber optic cable is currently run down many residential streets and brought straight to the home. This website will try to inform us how to choose the right fiber optic cable plus some basic fiber optic cable specifications.

Whenever you used fiber optic cable?

Fiber optic cables can transport more data and do this on the greater distance than typical copper communication cables. Fiber is utilized to link the networks of buildings together, link the dorms and buildings on a college campus, and today, link a growing number of residential customers to their television and telephone providers. In most a commercial building, however, fiber can be used to join the main distribution frame (MDF), where typically network servers reside, to telecommunication closets (TC) through the building.

For instance, a little cluster of cubicles as well as their occupants may be located 500 feet in the MDF. You would like to supply of their computers around the network. Since standard copper communication cables are restricted to 295 feet of installed cable, they won’t work on that distance. Multimode fiber is the solution. The cubicles can be wired with copper communication cables to some nearby enclosure. By placing the network switches and including a media converter in that enclosure, you may use a fiber optic cable to bridge the 500-foot gap. A media converter in the opposite end from the fiber optic cable completes the channel.

The above scenario describes a normal use for multimode duplex fiber optic cable inside a building. However, it’s just one of these of the way fiber optic cable can be employed for your transport of data. Fiber optic cable can also be installed where space is an issue since one small fiber optic cable can replace a huge selection of copper communication cables.

Pick the 50 micron or 62.5 micron?

Although 62.5 micron fiber was the most popular just a few years back, 50 micron quickly gained business and is also still achieve this. 50 micron fiber may have approximately 20 times the bandwidth (data throughput capacity) of 62.5 micron. For identification purposes, multimode fiber, as well as singlemode fiber, is frequently known by its performance level identified by ISO/IEC (International Organization of Standards and International Electrotechnical Committee), which is depending on the fibers bandwidth capabilities. 62.5 micron multimode is referred to as OM1. 50 micron fiber is known as OM2, OM3 and the recently added OM4. When you would imagine, OM4 has greater bandwidth than OM3 and OM3 has greater bandwidth than OM2.

50 micron OM3 fiber is designed to accommodate 10 Gigabit Ethernet as much as 300 meters, and OM4 can hold it to 550 meters. Therefore, many users are now choosing OM3 and OM4 on the other glass types. In fact, nearly 80% of fifty micron fiber sold is OM3 or OM4. Many fibre optic cable suppliers provide many kinds of OM4 multimode fiber,such as om4 mpo cable for sale in FC,LC, SC, ST, MU, and MTP connector.We can customize patch cables in any cut length.

Four steps to choose the fiber optic cable outer sheath:

1. You’d better choose Armored Fiber Cable when use cable directly buried outdoor. And judge black plastic outer sheath cable with two roots and over two root.
2. Pay attention to the characters of flame retardant, poison and smoke when use cable inside building. Generally, use flame retardant and smoke type cable within the pipeline. And choose flame retardant, smokeless and non-toxic enter exposed environment.
3. Choosing distribution cables in the apartment building vertical wiring. Breakout cables are employed to Level wiring type.
4. The best option to choose multimode optical cable when the transmission distance is under 2 km. Within the other sides, use single-mode optical cable when the transmission is a lot more than 2 km.

Red-hot News:

FiberStore update and upload the fiber optic cable products now,we provide many types of fiber optic cable (such as simplex fiber cable,duplex fiber cable,om3 multimode fiber,om4 multimode fiber,waterproof cable,armored fiber cable,om4 mpo cable and so on), and the cost of fiber optic cable was very cheaper than other company. We always meet or exceed industry standards of cable is used to ensure product quality and the best performance.

OM3 OR OM4 Cable Which One Do You Need

Share

Many types of fiber optic cable in the online company supply.It has many choices in the internet.How to choose the right fiber optic cables if you needed? Such as the OM3 multimode fiber OR OM4 multimode fiber.The first we must know fiber optic cable specifications,and  know their different,and finally to determine which one is the most suitable.

10G Ethernet:

The 10G Ethernet basic power budget is about 6dB but this is degraded for longer link lengths due to signal distortions such as modal dispersion. These distortions mean that the detector requires more power to operate. The way this extra power is accommodated in channel planning is through a “power penalty”. In our example, the power penalty increases from 0 to almost 5dB for the maximum channel length. The penalty is not linear and increases dramatically as the maximum length is reached. In designing the channel, a key factor is the power budget available for connection loss. This is the total power budget inclusive of penalties reduced by the cable attenuation, leaving that portion of the power budget that may be used to cover connector insertion loss, splice loss, bend loss and contamination.The table opposite shows that at 300m with OM3 the loss available for all connections is only 1.79dB. On the other end OM4 allows up to 4.55dB, an increase of 2.76dB. A typical data centre channel may have eight connections. For OM3, the average loss must be less than 0.24dB,including all factors which means premium terminations must be used and there is no margin for installation faults, pinched cables or any other channel problem With a budget of 0.57dB per connection, OM4 allows considerable headroom to support a stable network. Know more OM3 and OM4 in this blog ,it can help you to choose the best cable in your project.

OM3 multimode fiber:

OM3 10G fiber optic cables which are used for 10Gigabit Ethernet applications. These cables are also called multimode OM3 10G Aqua fiber optic cables. Our OM3 10G cables are various types including different connector types, cable structure and cable length. Our OM3 multimode fiber that are compliant to ISO/IEC 11801 standards. These cables are used for 10Gbps networks to meet the requirement of continuous growing of high data rates.Typically 10 Gigabit applications are run on 9/125 Single Mode fiber, which require costly single mode transceivers. By utilizing the FOB501B series cables, you can implement low cost multimode transceivers or VCSEL’s (Vertical Cavity Surface Emitting Lasers) resulting in greater overall system cost savings.

OM4 multimode fiber:

OM4 is the latest high modal bandwidth high performance 50/125 Graded Index Multimode (GIMM) cabled fibre specification. OM4 fibre enables extended range performance over high bit rate links such as 8 Gigabit Fibre Channel and 10 Gigabit Ethernet compared to existing fibre types. FiberStore offer a wide range of OM4 compliant cable assembly products in both standard OM4 and Reduced Bend Sensitivity (RBS) OM4 variants.

What is the difference between OM3 and OM4 fiber?

First, OM stands for optical multi-mode. Both OM3 an OM4 are  50/125 core fiber but they have different internal construction that allows the OM4 fiber to provide the same performance as OM3 but for longer distances. The reason for this is the difference in bandwidth, OM3 has 2500 megahertz bandwidth , OM4 has 4700 megahertz bandwidth. What this translates to is longer transmission distances for the OM4 fiber. So you will need to know the distance of the fiber run in order to help decide which kind of fiber and fiber accessories need to be used.

For more fiber optic cable specifications,pls contact with fibre optic cable suppliers.

Overview of Fiber Optic Cable Specifications

Share

Many questions tell us that it is important to protect the fibers.But how to protect the fiber cables,the first one is to know the fiber optic cable specifications,when we know it,we can protect it best. Cable’s job is to protect the fibers from the hazards encountered in an installation. Will the cables be exposed to chemicals or have to withstand a wide temperature range? What about being gnawed on by a woodchuck or prairie dog? Inside buildings, cables don’t have to be so strong to protect the fibers, but they have to meet all fire code provisions. Outside the building, it depends on whether the cable is buried directly, pulled in conduit, strung aerially or whatever.

Since the plan will call for a certain number of fibers, consider adding spare fibers to the cable – Cost of fiber optic cable is cheap! That way, you won’t be in trouble if you break a fiber or two when splicing, breaking-out or terminating fibers. And request the end user consider their future expansion needs. Most users install lots more fibers than needed, especially adding single mode duplex fiber to multimode duplex fiber optic cable for campus or backbone applications.Now, let’s go to know the standard fiber optic cable.

A standard fiber optic cable is comprised of four specific parts:

Core – A fiber optic’s center is made of glass, and this tube carries the cable’s light signals. Depending on the type of fiber optic cable (single mode or multi mode), the core varies in size. Single mode duplex fiber consist of a tiny glass core that typically has a diameter between 8.3 and 10 microns. This type of cable is usually installed for transferring high speed data over long distances. For multi mode fibers, the core is larger. Their core size ranges from 5 to 7 times larger than single mode cores. With a diameter ranging between 50 to 62.5 microns, multimode duplex fiber optic cable is perfect for high data applications. Multi mode cables are typically used over shorter distances than single mode fiber optic cables.FiberStore provide the hot seller multimode cable–OM4 multimode fiber and OM3 multimode fiber.

Cladding layer – Also constructed of glass, this “core cover” is used to keep the light in the core. When transmitting data (especially over long distances), light rays can reflect off each other and travel in different directions. The cladding keeps those signals straight.

Buffer – Also called the buffer coating, this sleeve protects the core and cladding from foreign material (FM) such as outside light, moisture, dirt and other substances. More often than not, the buffer is made of plastic.

Jacket – The fiber optic’s cable exterior is typically made of tough, durable polyurethane. Its job is to protect the overall integrity of the fiber optic cable. The jacket is the first line of defense in a fiber optic cable. Routing cables can put stresses on a fiber optic cable (kinks, knots, etc.) and a jacket sometimes contains an extra layer to avoid these potential hazards.

Fiber Optic Cable Based on Fiber Types

Based upon fiber types in a cable, fiber optic cables can be categorized as three types.

Single Mode Fiber Optic Cable
All fibers in the cable are single mode fibers.

Multimode Fiber Optic Cable – Multi Mode Fiber Optic Cable
All fibers in the cable are multimode cables.

Hybrid Composite Cable
Both single mode and multimode fibers are packaged in one cable, such as 4 multimode fibers and 4 single mode fibers in a single cable.

For more info about the fiber optic cable,pls focus on fiber optic cable manufacturerFiberStore.Thank you!

Introduction on Several Types Of Fiber Optic Cable

Share

There are many types of fiber optic cable. However, how much do you know about them? Don’t worry. Read through this post to learn different types of fiber optic cable and have a general understanding of them in case of needing.

Types Of Fiber Optic Cable

Similar Two Types Of Fiber Optic Cable: Simplex and Duplex

1 or 2 fibers (zip cord) cable. This flexible yet durable bulk fiber cable is perfect for building duplex fiber or simplex fiber optic cable assemblies or any project that requires a more durable single or dual core fiber connection. Multimode or Single mode. This series features 125μm fibers with a tight buffer, then the aramid yarn for strength and a final outer jacket for protection. There are multiple fiber modes and jacket colors to choose from OM3 fiber optic cable, 50/125, 62.5/125 or 9/125. Our bulk fiber cable is sold by the meter and there is no minimum or maximum order. Contact us today for large project volume discounts.

900um Tight Buffer Cable
This flexible yet durable bulk fiber cable is perfect for building your own Multimode or Singlemode fiber jumpers or for fiber optic pigtails.This series features a 900um outer jacket and single fiber. There are multiple fiber modes and jacket colors to choose from 10Gb OM3, 50/125, 62.5/125 or 9/125. Our bulk fiber cable is sold by the meter and there is no minimum or maximum order. Contact us today for large project volume discounts.

Fiber Optic Distribution Cable
4 to 144 fiber distribution cable. This is a flexible yet durable bulk fiber cable. Multiple fibers, each wrapped inside a .9 mm (900um) jacket, then a Aramid yarn strength member surrounds the buffer, and all in finally wrapped is a Riser, Plenum, or LSZH Jacket.There are multiple fiber modes and jacket colors to choose from 10Gb OM3, 50/125, 62.5/125 or 9/125. Our bulk fiber cable is sold by the meter and there is no minimum or maximum order. Contact us today for large project volume discounts.

OM4 OM3 10G Fiber Cable
OM4 fiber & OM3 multimode fiber 10G Fiber Cables are used in any data center looking for high speeds of 10G or even 40G or 100G. OM3 & OM4 multimode fiber are ideal for using in many applications such as Local Area Networks (LAN) backbones, Storage Area Networks (SAN), Data Centers and Central Offices.

Indoor/Outdoor Cable
FiberStore Offers a wide range of Indoor/Outdoor Cable in Distribution Cable. 900um buffered fiber that are easy to splice or termi-nate, surrounded by Aramid Yarn and wrapped in a OFNR (Riser rated) or OFNP (Plenum Rated) Jacket.

Breakout Cable
Breakout cable flexible and easy to terminate, with individual 900um buffered fibers, then each is separately cover in Aramid Yarn and individually jacketed with a 2-2.5mm tube, then a final Riser Rated (OFNR) jacket adds the final protection. Good for indoor and out-door use.

Fiber Optic Ribbon Cable
12 fiber or 8 fiber, jacketed or bare ribbon cable. This flexible yet durable bulk fiber cable is perfect for building MTP / MPO fiber assemblies or any project that requires a fiber array. Multimode or Singlemode. This series features 250μm fibers with a matrix on the out side for protection. Then a outer jacket with Kevlar support. There are multiple fiber modes and jacket colors to choose from 10Gb OM3, 50/125, 62.5/125 or 9/125. Our bulk fiber cable is sold by the meter and there is no minimum or maximum order. Contact us today for large project volume discounts.

Loose Tube Cable
Loose tube cables are the most widely used cables for outside plant trunks because it offers the best protection for the fibers under high pulling tensions and can be easily protected from moisture with water-blocking gel or tapes.These cables are composed of several fibers together inside a small plastic tube, which are in turn wound around a central strength member, surrounded by aramid strength members and jacketed, providing a small, high fiber count cable. Some outdoor cables may have double jackets with a metallic armor between them to protect from chewing by rodents or kevlar for strength to allow pulling by the jackets.

Aerial Self Supporing Figure 8
Multiple Fiber , each being 250um fibers that are in bundles with a max of 12 fibers per tube, Then a water blocking filling compound. All is then wrapped in a loose tube, then Aramid yarn is wrapped around the tubes and a central strength member. A poly sheath is wrapped around and A cable is added for aerial support. and finally wrapped all with a Poly jacket. Available in All fiber modes.

Armored Double and Single Jacket
Multiple Fiber , each being 250um fibers that are in bundles with a max of 12 fibers per tube, Then a water blocking filling compound.All is then wrapped in a loose tube, then Aramid yarn is wrapped around the tubes and a central strength member. Armored layer is added to all and some cases a double layer. All is finally wrapped with Poly jacket.

By the way, FiberStore is a professional fiber optic cable manufacturer. It offers competitive fiber optic cable prices. For more cables info or price, you can visit FS.COM for more details.

types of fiber optic cable

Related articles:
Three Common Types Of Fiber Optic Cable

How Many Fiber Connector Types Do You Know?

Different Single Mode and Multimode Fiber Types

Share

Fiber optic cables are the medium of choice in telecommunications infrastructure, enabling the transmission of high-speed voice, video, and data traffic in enterprise and service provider networks. Depending on the type of application and the reach to be achieved, various types of fiber may be considered and deployed, such as single mode fiber type and multimode duplex fiber.

Fiber optic cables come in several different configurations, each ideally suited to a different use or application. Early fiber designs that are still used today include single mode fiber type and multimode fiber. Since Bell Laboratories invented the concept of application-specific fibers in the mid-1990s, fiber designs for specific network applications have been introduced. These new fiber designs – used primarily for the transmission of communication signals – include Non-Zero Dispersion Fiber (NZDF), Zero Water Peak Fiber (ZWPF), 10-Gbps laser optimized multimode fiber, and fibers designed specifically for submarine applications. Specialty fiber designs, such as dispersion compensating fibers and erbium doped fibers, perform functions that complement the transmission fibers. The differences among the different transmission fiber types result in variations in the range and the number of different wavelengths or channels at which the light is transmitted or received, the distances those signals can travel without being regenerated or amplified, and the speeds at which those signals can travel.

There are two different types of fiber optic cable: multimode and single mode fiber type (MMF and SMF). Both are used in a broad range of telecommunications and data networking applications. These fiber types have dominated the commercial fiber market since the 1970’s. The distinguishing difference, and the basis for the naming of the fibers, is in the number of modes allowed to propagate in the core of a fiber. The “mode” is an allowable path for the light to travel down a fiber. A multimode fiber allows many light propagation paths, while a single mode fiber allows only one light path.

In multimode fiber, the time it takes for light to travel through a fiber is different for each mode resulting in a spreading of the pulse at the output of the fiber referred to as intermodal dispersion. The difference in the time delay between the modes is called Differential Mode Delay (DMD). Intermodal dispersion limits multimode fiber bandwidth. This is significant because a fiber’s bandwidth determines its information carrying capacity, i.e., how far a transmission system can operate at a specified bit error rate.

The optical fiber guides the light launched into the fiber core (Figure 1). The cladding is a layer of material that surrounds the core. The cladding is designed so that the light launched into the core is contained in the core. When the light launched into the core strikes the cladding, the light is reflected from the core-to-cladding interface. The condition of total internal reflection (when all of the light launched into the core remains in the core) is a function of both the angle at which the light strikes the core-to-cladding interface and the index of refraction of the materials. The index of refraction (n) is a dimensionless number that characterizes the speed of light in a specific media relative to the speed of light in a vacuum. To confine light within the core of an optical fiber, the index of refraction for the cladding (n1) must be less than the index of refraction for the core (n2).

Fibers are classified in part by their core and cladding dimensions. Single mode duplex fiber have a much smaller core diameter than multimode duplex fiber optic cable. However, the Mode Field Diameter (MFD) rather than the core diameter is used in single mode fiber specifications. The MFD describes the distribution of the optical power in the fiber by providing an “equivalent” diameter, sometimes referred to as the spot size. The MFD is always larger than the core diameter with nominal values ranging between 8-10 microns, while single mode fiber core diameters are approximately 8 microns or less. Unlike single mode fiber type, multimode fiber is usually referred to by its core and cladding diameters. For example, fiber with a core of 62.5 microns and a cladding diameter of 125 microns is referred to as a 62.5/125 micron fiber. Popular multimode product offerings have core diameters of 50 microns or 62.5 microns with a cladding diameter of 125 microns. Single mode fibers also have 125 micron cladding diameters.

A single mode fiber, having a single propagation mode and therefore no intermodal dispersion, has higher bandwidth than multimode fiber. This allows for higher data rates over much longer distances than achievable with multimode fiber. Consequently, long haul telecommunications applications only use single mode fiber type, and it is deployed in nearly all metropolitan and regional configurations. Long distance carriers, local Bells, and government agencies transmit traffic over single mode fiber laid beneath city streets, under rural cornfields, and strung from telephone poles. Although single mode duplex fiber has higher bandwidth, multimode fiber supports high data rates at short distances. The smaller core diameter of single mode duplex fiber also increases the difficulty in coupling sufficient optical power into the fiber. Relaxed tolerances on optical coupling requirements afforded by multimode fiber enable the use of transmitter packaging tolerances that are less precise, thereby allowing lower cost transceivers or lasers. As a result, multimode duplex fiber optic cable has dominated in shorter distance and cost sensitive LAN applications.

OM3 Multimode 10G Aqua Fiber Optic Cables

Share

The Internet, telephone calls, and cable television all transmit information that can pass through fiber optic cables. Imagine having all this information at lightning-fast speed with less signal disturbances. The mechanics that lie beneath the ingenious work of fiber optic cables rests simply with the fact that light travels faster than electricity with fewer disturbances. The end result? Fiber optic cables provide a quicker and clearer transmission of data. Designed for optimal performance, our fiber optic cables allow you to enjoy the best quality technological experiences possible.

Now, many fibre optic cable suppliers provide a full range of bulk fiber optic cable. Including om3 fiber optic cable, om4 multimode fiber, armored fiber cable, simplex fiber optic cable, multimode duplex fiber optic cable and so on. Today, I will recommended the OM3 fiber optic cable in this blog. Know more OM3 fiber optic cable info and how to choose it.

OM3 10G fiber optic cables are used for 10Gigabit Ethernet applications. These cables are also called multimode OM3 10G Aqua fiber optic cables. Our OM3 10G cables come in various types including different connector types, cable structure and cable length. Our OM3 multimode fiber that are compliant to ISO/IEC 11801 standards. These cables are used for 10Gbps networks to meet the requirement of continuous growing of high data rates.

Big quantity information is generated every day on the internet and people need to exchange more and more information which in turn result in the demand of more and more bandwidth. IEEE802.3ae defined the 10Gigabit Ethernet standards used in LANs. OM3 10G multimode fiber optic cables are developed for such 10Gig Ethernet applications, they are with so called OM3 optical fiber, which is 50/125 type and with industrial acknowledged Aqua color. In FiberStore, we supply the OM3 cable standard color is aqua, but we also supply the customized color service,such as black, blue, orange, green, brown, slate, white, red, yellow, purple, rose, aqua or custom specified. We provide many types of OM3 products, including various kinds of OM3 fiber cable assemblies with various connectors like SC, ST , FC, LC, MTRJ, etc.

OTHER INFO: Which optical fiber should I choose, 50 micron or 62.5 micron?

Although 62.5 micron fiber was the most popular only a few years ago, 50 micron quickly gained market share and is continuing to do so. 50 micron fiber can have up to 20 times the bandwidth (data throughput capacity) of 62.5 micron. For identification purposes, multimode fiber, and also singlemode fiber, is often referred to by its performance level identified by ISO/IEC (International Organization of Standards and International Electrotechnical Committee), which is based on the fibers bandwidth capabilities. 62.5 micron multimode is referred to as OM1. 50 micron fiber is referred to as OM2, OM3 and the recently added OM4. As you would imagine, OM4 has greater bandwidth than OM3 and OM3 has greater bandwidth than OM2.

Fifty micron OM3 fiber is designed to accommodate 10 Gigabit Ethernet up to 300 meters, and OM4 can accommodate it up to 550 meters. Therefore, many users are now choosing OM3 and OM4 over the other glass types. In fact, nearly 80% of 50 micron fiber sold is OM3 or OM4.

If you require higher data rates or plan on upgrading your network in the near future, laser optimized 50 micron (OM3 or OM4) would be the logical choice.

We also supply 10Gig multimode fiber optic cables with various optional structures, such as om3 multimode fiber, om4 multimode fiber, multimode duplex fiber optic cable and so on. Our  fiber optic cables are manufactured according to industrial standards and they feature the good price and reliable quality. Per foot price of each fiber cable is flexible depending on the quantities of your order, making your cost of large order unexpected lower. Customers can also have the flexibility to custom the cable plant to best fit their needs. Only fiber cable that meets or exceeds industry standards is used to ensure quality products with best-in-class performance.FiberStore is a your best buy fiber optic cable place.

Relationship Between The Fiber Optics And Fiber Optic Cable

Share

Fiber Optic Cable:

In fiber optic cable, optical fibers carry digital data signals in the form of modulated pulses of light. This is a relatively safe way to send data because no electrical impulses are carried over the fiber optic cable. This means that fiber-optic cable cannot be tapped and the data stolen, which is possible with any copper-based cable carrying data in the form of electronic signals.

Fiber optic cable is good for very high-speed, high-capacity data transmission because of the lack of attenuation and the purity of the signal.

A fiber optic cable can transmit information at very high speed over a very great distance. It comprises one or more optical fibers enveloped in a thermoplastic sheath for mechanical protection.

Fiber Optic Composition:

Optical fibers consist of an extremely thin cylinder of glass, called the core, surrounded by a concentric layer of glass, known as the cladding. The fibers are sometimes made of plastic. Plastic is easier to install, but cannot carry the light pulses as far as glass.

Each glass strand passes signals in only one direction. So a cable consists of two strands in separate jackets. One strand transmits and one receives. A reinforcing layer of plastic surrounds each glass strand while kevlar fibers provide strength.

Fiber Optic Technologies

Data transmission via fiber optic cable uses a laser beam, offering very little loss over great distances. The core fiber has a higher refractive index than its cladding material, keeping the light within by avoiding multiple reflection (single-mode fiber), thus acting as a wave guide.

Fiber Optic Cable Types:

Now,many fiber optic cable suppliers provide a wide range of quality optical fiber cables with detailed fiber optic cable specifications displayed for your convenience selecting.Many types of fiber optic cable including about 250um bare fiber,tight buffer,large core glass,simplex fiber optic cable,duplex fiber cable,OM3 OM4, Indoor Outdoor cable,loose tube,breakout cable,ribbon cable,LSZH cable,armored cable,ftth cable,figure 8 aerial cable,plastic cable,hybrid and composite cable,adss cable,special cable and so on.

How to Choose Fiber Optic Cable?

Fiber optic cables are preferable to electrical cables over long transmission distances or when an electromagnetic disturbance in an industrial setting might interfere with the signal. Single-mode fibers are required for high-speed, long-distance transmission, while multi-mode fibers are suitable for low speeds and short distances.

Optical fibers have found a widespread use in optical technologies. Today is electronical high-tech applications as for example the Laser Scanning Microscopy, the sensor technology, machine vision, medical laser or military technology use flexible elements in form of optical fibers for light transfer frequently. In most cases, very special requirements to design and function of optical fiber cables are put. We realize custom-made solutions regarding the design of fiber connectors and wavelength, transceiver sale mode behavior, polarization and beam profile.This enables short decisions and high flexibility in the creation of single components as well as system solutions. FiberStore wide-ranging competence is a substantial advantage in the realization of custom solutions. Want to know more customized to fiber optic products(such as 10g fiber cable). FiberStore can supply this service.

Some Question And Answer About OM4 Multimode Fiber

Share

The burst out in demand for bandwidth in enterprise networks is driving an urgent need for higher Ethernet network speeds. There are several factors, including broadband penetration fueled by video-rich content, Data Center demands, and exponential growth in super computer and R&D computing activities.

Laser Optimized Fiber:
Laser optimized multimode fiber is recognized as the medium of choice to support these high speed data networks. With next-generation 40 and 100 Gigabit Ethernet speeds on the horizon, the industry is developing a new type of multimode fiber, called OM4, there is now a standard that is specifically targeted at this product. Prior to the standardization of OM4, these higher bandwidth fibers were sold as a part of OM3.Which will offer a minimum effective modal bandwidth of 4700 MHz-km at 850 nm, compared with 2000 MHz-km for OM3 fiber optic cable.

What is OM4 fiber?
OM4 fiber is a 50 μm laser-optimized fiber with extended bandwidth. It is designed to enhance the system cost benefits enabled by 850 nm VCSELs for existing 1 and 10 Gb/s applications as well as future 40 and 100 Gb/s systems.
OM4 fiber supports Ethernet, Fiber Channel, and OIF applications, allowing extended reach upwards of 550 meters at 10 Gb/s for ultra long building backbones and medium length campus backbones. With an Effective Modal Bandwidth (EMB, also known as laser bandwidth) of 4700 MHz-km (more than double the IEEE require-ment for 10 Gb/s 300 meter support), OM4 fiber is also especially well suited for shorter reach data center and high performance computing applications.
Why is it called OM4 and the relationship with OM1,OM2,OM3?
Multimode fibers are identified by the OM (“optical mode”) designation as outlined in the ISO/IEC 11801 standard:
• OM1, for fiber with 200/500 MHz-km over filled launch (OFL) bandwidth at 850/1300 nm (typically
62.5/125 μm fiber)
• OM2, for fiber with 500/500 MHz-km OFL bandwidth at 850/1300 nm (typically 50/125 μm fiber)
• OM3, for laser-optimized 50 μm fiber having 2000 MHz-km effective modal bandwidth (laser band-width), designed for 10 Gb/s transmission.
For many years 62.5/125 µm (OM1) and conventional 50/125 µm multi-mode fiber (OM2) were widely deployed in premises applications. These fibers easily support applications ranging from Ethernet (10 Mbit/s) to Gigabit Ethernet (1 Gbit/s) and, because of their relatively large core size, were ideal for use with LED transmitters. Newer deployments often use laser-optimized 50/125 µm multi-mode fiber (OM3). Fibers that meet this designation provide sufficient bandwidth to support 10 Gigabit Ethernet up to 300 meters. Optical fiber manufacturers have greatly refined their manufacturing process since that standard was issued and cables can be made that support 10 GbE up to 550 meters. Laser optimized multi-mode fiber (LOMMF) is designed for use with 850 nm VCSELs. Today, this evolution continues with the development of OM4 multimode fiber as the industry prepares itself for speeds of 40 and 100 Gb/s.

What are the standards that define the use of OM4 fiber?
There are a number of standards under development that will define the use of OM4 fiber for high-speed transmission. Within the TIA, work is progressing on TIA-492AAAD, which will contain the OM4 fiber performance specifications. Similarly, IEC is working in parallel to adopt equivalent specs that will be documented in theinternational fiber standard IEC 60793-2-10 as fiber type A1a.3.

What role will OM4 fiber play in next-generation speeds?
IEEE continues to work on standards for next-generation speeds, where OM4 fiber is likely to play a large role.For short reach 40 Gb/s and 100 Gb/s applications on multimode fiber, it appears the IEEE 802.3ba Task Force has defined a Physical Medium Dependent (PMD) solution involving already proven parallel optics technology. This will help preserve the low cost advantage of today’s 850 nm VCSEL light sources. These parallel systems will transmit one 10 Gb/s signals on each of 4 or 10 fibers (for 40 Gb/s and 100 Gb/s, respectively). Each 10 Gb/s signal will be aggregated in an arrayed transceiver containing 4, or 10, VCSELs and detectors.
For these parallel systems, IEEE set an objective of a minimum reach of 100 meters (m), specifically on OM3 fiber (OM1 and OM2 fibers will not be supported in the 40 Gb/s and 100 Gb/s standard). Because the 100 m distance is expected to cover only about 85 percent of data center links, the Task force subsequently adopted OM4, capable of reaching 125 m. Although the additional 25 m may seem insignificant, it will support the majority of the remaining access to distribution and  distribution to core links in large data centers.

Note: FiberStore is a professional fiber optic cable manufacturer. We supply many kinds of 10G fiber cables. They are used for different applications, one must do a thorough research before buying fiber cables for network cabling. If you have some questions with 10G fiber cable, pls contact us in FiberStore website or via sales@fs.com.