Tag Archives: IPv4

What Is IPv4 & IPv6 Dual Stack and MPLS Technique?

Share

We usually see the switch products description as the following “Hardware support for IPv4 & IPv6 dual stack and rich MPLS features provide customers with a wealth of business features and routing functions, as well as hardware-based security features”. Then, what’s the IPv4 & IPv6 dual stack? What does the “MPLS” mean?

What Is IPv4 & IPv6 Dual Stack?
As we all know, the entire Internet world is currently running IPv4 (Internet Protocol Version 4). But we’ve run completely out of current IPv4-type addresses. So a new IP address format called IPv6 appears. The IPv6 format creates an IP address with a much longer number, which allows for a great many more IP addresses—so many, we should never run out again! Here’s an example of the difference between the two formats:

  • Sample IPv4 address: 192.168.1.2
  • Sample IPv6 address: 2001:0578:0123:4567:89AB:CDEF:0123:4567

One significant problem is that the two IP address formats aren’t compatible and total conversion to IPv6 is a way off. Internet Service Providers (ISPs) need to provide their customers with both IPv4 and IPv6 service. How to solve this problem? The answer is IPv4 & IPv6 dual stack. With the dual stack solution, every networking device, server, switch, router and firewall in an ISP’s network will be configured with both IPv4 and IPv6 connectivity capabilities. Most importantly, dual stack technology allows ISPs to process IPv4 and IPv6 data traffic simultaneously.

IPv4 & IPv6 Dual Stack

MPLS Technique Explanation
MPLS stands for “Multi-Protocol Label Switching”. It is a type of data-carrying technique for high-performance telecommunications networks. In a traditional IP network, each router performs an IP lookup, determines a next-hop based on its routing table, and forwards the packet to that next-hop. Rinse and repeat for every router, each making its own independent routing decisions, until the final destination is reached.

Multi-Protocol Label Switching_mpls

MPLS does “label switching” instead. The first device does a routing lookup, just like before. But instead of finding a next-hop, it finds the final destination router. And it finds a pre-determined path from “here” to that final router. The router applies a “label” based on this information. Future routers use the label to route the traffic without needing to perform any additional IP lookups. At the final destination router the label is removed. And the packet is delivered via normal IP routing.

Due to the labeling technology, the speed of performing lookups for destinations and routing is much faster than the standard IP table lookups non-MPLS routers have to perform. Besides, MPLS networks achieve greater Quality of Service (QoS) for their customers. FS.COM S5800-48F4S routing switches support for IPv4 & IPv6 dual stack and rich MPLS features and enhanced multicast and QoS capabilities can provide customers with a wealth of business features and routing functions, as well as hardware-based security features.

Related Articles:

Core Switch & Edge Switch: How to Choose the Right One?

MLAG vs. Stacking: What Is Your Option?