Tag Archives: 400G Network

Infographic – Types of 400G Transceivers

Share

With the tremendous requirement for high bandwidth in 5G, loT and cloud data center, the focus on 400G Ethernet has been lasting for several years. As the key hardware devices for optical network interconnection, 400G transceivers have also become the mainstream of the industry. The following is a brief introduction to the types of 400G transceivers.

Infographic Source:

https://community.fs.com/blog/infographic-types-of-400g-transceivers.html

Related Articles:

https://community.fs.com/blog/faqs-on-400g-transceivers-and-cables.html
https://community.fs.com/blog/400g-transceiver-dac-or-aoc-how-to-choose.html

100G NIC: An Irresistible Trend in Next-Generation 400G Data Center

Share

NIC, short for network interface card, which can be called network interface controller, network adapter or LAN adapter, allows a networking device to communicate with other networking devices. Without NIC, networking can hardly be done. There are NICs with different types and speeds, such as wireless and wired NIC, from 10G to 100G. Among them, 100G NIC, as a product appearing in recent years, hasn’t taken a large market share yet. This post gives a description of 100G NIC and the trends in NIC as follows.

What Is 100G NIC?

NIC is installed on a computer and used for communicating over a network with another computer, server or other network devices. It comes in many different forms but there are two main different types of NIC: wired NIC and wireless NIC. Wireless NICs use wireless technologies to access the network, while wired NICs use DAC cable or transceiver and fiber patch cable. The most popular wired LAN technology is Ethernet. In terms of its application field, it can be divided into computer NIC card and server NIC card. For client computers, one NIC is needed in most cases. However, for servers, it makes sense to use more than one NIC to meet the demand for handling more network traffic. Generally, one NIC has one network interface, but there are still some server NICs that have two or more interfaces built in a single card.

Figure 1: FS 100G NIC

With the expanding of data center from 10G to 100G, 25G server NIC has gained a firm foothold in the NIC market. In the meantime, the growth in demand for bandwidth is driving data center to higher bandwidth, 200G/400G and 100G transceivers have been widespread, which paves the way for 100G server.

How to Select 100G NIC?

How to choose the best 100G NIC from all the vendors? If you are stuck in this puzzle, see the following section listing recommendations and considerations to consider.

Connector

Connector types like RJ45, LC, FC, SC are commonly used connectors on NIC. You should check the connector type supported by NIC. Today many networks are only using RJ45, so it may be not that hard to choose the NIC for the right connector type as it has been in the past. Even so, some network may utilize a different interface such as coax. Therefore, check if the card you are planning to buy supports this connection before purchasing.

Bus Type

PCI is a hardware bus used for adding internal components to the computer. There are three main PCI bus types used by servers and workstations now: PCI, PCI-X and PCI-E. Among them, PCI is the most conventional one. It has a fixed width of 32 bits and can handle only 5 devices at a time. PCI-X is a higher upgraded version, providing more bandwidth. With the emergence of PCI-E, PCI-X cards are gradually replaced. PCI-E is a serial connection so that devices no longer share bandwidth like they do on a normal bus. Besides, there are different physical sizes of PCI-E card in the market: x16, x8, x4, and x1. Before purchasing a 100G NIC, it is necessary to make sure which PCI version and slot width can be compatible with your current equipment and network environment.

Hot swappable

There are some NICs that can be installed and removed without shutting down the system, which helps minimize downtime by allowing faulty devices to be replaced immediately. While you are choosing your 100G NIC, be sure to check if it supports hot swapping.

Trends in NIC

NICs were commonly used in desktop computers in the 1990s and early 2000s. Up to now, it has been widely used in servers and workstations with different types and rates. With the popularization of wireless networking and WiFi, wireless NICs gradually grows in popularity. However, wired cards are still popular for relatively immobile network devices owing to the reliable connections.NICs have been upgrading for years. As data centers are expanding at an unprecedented pace and driving the need for higher bandwidth between the server and switches, networking is moving from 10G to 25G and even 100G. Companies like Intel and Mellanox have launched their 100G NIC in succession.

During the upgrading from 10G to 100G in data centers, 25G server connectivity popularized for 100G migration can be realized by 4 strands of 25G. 25G NIC is still the mainstream. However, considering the fact that the overall bandwidth for data centers grows quickly and hardware upgrade cycles for data centers occur every two years, the ethernet speed can be faster than we expect. 400G data center is just on the horizon. It stands a good chance that 100G NIC will play an integral role in next-generation 400G networking.

Meanwhile, the need of 100G NIC will drive the demand for other network devices as well. For instance, 100G transceiver, the device between NIC and network, is bound to pervade. Now 100G transceivers are provided by many brands with different types such as CXP, CFP, QSFP28 transceivers,etc. FS supplies a full series of compatible 100G QSFP28 and CFP transceivers that can be matched with the major brand of 100G Ethernet NIC, such as Mellanox and Intel.

Conclusion

Nowadays with the hyping of the next generation cellular technology, 5G, the higher bandwidth is needed for data flow, which paves the way for 100G NIC. On the occasion, 100G transceivers and 400G network switches will be in great need. We believe that the new era of 5G networks will see the popularization of 100G NIC and change towards a new era of network performance.

Article Source: 100G NIC: An Irresistible Trend in Next-Generation 400G Data Center

Related Articles:

400G QSFP Transceiver Types and Fiber Connections

How Many 400G Transceiver Types Are in the Market?

What’s the Current and Future Trend of 400G Ethernet?

Share
400G

According to the leading Cloud Service Providers (CSPs) and various networking forecast reports, 400G Ethernet will emerge as the leading technology since 2020. IDC (International Data Corporation) and Cignal Ai have also proved the similar situation. In short, 400G Ethernet will replace 100G and 200G deployments in a faster way than 100G did to the previous Ethernet.

New Technology Adoption Rates.jpg
Faster 400G Ethernet Trend Than Previous Ethernet.jpg

The Rise of 400G Ethernet

The factors affecting the development of 400G are mainly application-driven and technology-driven. The application drivers include 5G high-speed transmission, market requirements for data centers, cloud computing, and high-definition video transmission. Technology drivers include development of technologies in the market and product standardization.

Application-Driven Factors

  • 5G Accelerates 400G Ethernet: An analysis from Cisco points out that 5G technology needs edge computing architecture, which brings cloud resources—compute, storage and networking—closer to applications, devices and users. While, the edge computing needs more bandwidth, support for more devices on the network, and greater security to protect and manage the data. For example, a 4G radio system can support up to only 2,000 active devices in a square kilometer, while 5G could support up to 100,000 active devices in the same range. With 400G technology offering more bandwidth, more devices and applications could be supported in 5G.
Items4G LTE5G
Average Data Rate25 Mb/s100 Mb/s
Peak Data Rate150 Mb/s10,000 Mb/s
Latency50 ms1 ms
Connection Density2,000 Per Square Kilometer100,000 Per Square Kilometer
  • Data Center & Cloud Computing Requirements: A research from Cisco indicates that cloud-based data centers will take over 92% of the next-generation data center workload while the traditional data centers will take over less than 8% after 2021. These objective requirements for higher data rates drive 400G development greatly. It is estimated that 400G will be the prevailing speed in switch chips and network platforms in the coming years.
  • High-Definition Video Transmission Needs: Basically all forms of Internet applications are moving towards video. It is estimated that more than 80% of the traffic is video. Video is a very important platform for everyone to interact in the future, especially real-time video streaming, such as multi-party video conferences. High-definition videos (such as 4K videos) need more bandwidth and less latency compared with the previous normal ones featuring lower definition.

Technology-Driven Factors

400G technology was originally known as IEEE 802.3bs and was officially approved in December,  2017. It regulates new standards including Forward Error Correction (FEC) to improve error performance. Abide by these standards, early 400G network elements have successfully completed trials and initial deployment. At present, some brand 400G switches have been put into use such as Cisco 400G Nexus, Arista 400G 7060X4 Series, Mellanox Spectrum-2, FS 400G switch, etc. 400G connection scheme is also blooming such as 400G DAC and 400G transceivers (400G QSFP-DD transceiver, 400G OSFP transceiver, 400G CFP8 transceiver, etc.), of which 400G QSFP-DD is becoming the leading form factor for its high density and low power consumption. As 400G Ethernet grows faster to standardization, commercialization and scale, soon 400G product system will be gradually perfect and more 400G products will appear in return.

Influences of 400G Ethernet

400G Optics Promotes 25G and 100G Markets While Reduces 200G Market Share

Compared to the 10G Ethernet, 25G Ethernet gains more popularity in the whole optical transmission industry because 25Gbps and 50Gbps per channel technology provide the basic standards for existing 100G (4x 25Gbps), the coming 400G (8x 50Gbps) and the future 800G network. Therefore, the rapid development of 400G Ethernet will promote the 25G and 100G markets to a certain extent in turn. Similarly, the quick appearance of 400G applications implicates that 200G is a flash in the pan.

400G Technology Is Expected to Reduce Overall Network Operation and Maintenance Costs

  • For access, metro, and data center interconnection scenarios, where short transmission distance and higher bandwidth are required, fiber resources are relatively scarce. The single-carrier 400G technology can provide the largest transmission bandwidth and the highest spectral efficiency with the simplest configuration, which effectively reduces transmission costs.
  • In the backbone and some more complex metropolitan area networks, where the transmission distance is longer with more network nodes, the requirements for transmission performance are more stringent. Under such circumstances, dual-carrier technology (2x 200G) and an optimized algorithm could work together to compress the channel spacing. This can not only improve the spectral efficiency by 30% (close to the level of a single-carrier 400G technology), but also extend the transmission distance of 400G Ethernet to several thousand kilometers, helping operators quickly deploy 400G backbone networks with minimum bandwidth resources.
  • 400G solution can also increase the single fiber capacity by 40% and reduce power consumption by 40%, thereby greatly improving network performance and reducing network operation and maintenance costs.

Opportunities for 400G Ethernet Vendors and Users

Many suppliers hype their 400G products to get ahead of the curve. Actually, few vendors have the real supply capacity and the quality of most 400G products supplied can’t be assured. To win from the fierce market competition, vendors should pay more attention to improving product quality and strong supply capability. And this is indubitably beneficial to users, who can get better products and services with relatively lower prices.

Impact of 400G Optics on Cabling and Connectivity

In the multimode installed base, the biggest difference between 100G and 400G modules is the increase in total number of fibers. For single mode transmission system, most of the duplex LC and MPO-based architecture that is deployed at 100G should serve for 400G. For parallel or multi-fiber transmission, transceivers like 400GBASE-SR4.2 operating with short wavelength division multiplexing (SWDM) at four wavelengths provide longer distances over OM5 fiber than OM4 or OM3. And OM5 wideband multimode fiber (WBMMF) will allow use of SWDM technology to transmit multiple signals (wavelengths) on one fiber. This indicates that OM5 fiber and SWDM technologies will continue to offer improved support on 400G Ethernet.

Are You Ready for 400G Ethernet?

400G Ethernet is an inevitable trend in current networking market. Driven by various market demands and technologies, it has come more rapidly than any previous technology. And it also has many significant effects, such as reducing the market share of 200G and saving transmission costs to a certain extent. There are already some mature 400G optics products in the market, such as 400G QSFP-DD transceivers400G DACs, as well as 400G DAC breakout cables. And 400G technology is no doubt going to be more and more advanced to promote the developments of 400G Ethernet and 400G applications.

Original Source: What’s the Current and Future Trend of 400G Ethernet?

400G Transceiver, DAC, or AOC: How to Choose?

Share

Due to the increasing growth in the demand for data centers and cloud computing, enterprises are eager for data centers with higher speed, larger bandwidth, and lower latency. In this case, 400G Ethernet has become an inevitable trend in data centers. With the advent of 400G technology, there are typically two options for 400G data center connectivity: 400G transceivers and 400G DAC/AOC.

400G Transceivers

400G transceivers are common solutions for 400G data center interconnection. According to different 400G transceiver form factors, there are CFP8, QSFP-DD, OSFP, COBO, etc., of which the most common type is QSFP-DD. These transceivers are different from each other in terms of transmission distance, connector, media and so on.

Usually, the SR8 module uses an MPO-16 connector to connect to 8 fiber pairs, realizing 400G transmission. The DR4 / XDR4 / PLR4 modules use an MPO-12 connector to connect to 4 fiber pairs. Unlike the SR8 and DR4, the FR4 optical modules use a duplex LC optical connector. And the FR8 modules (also called 2FR4 modules) use a dual CS connector to connect to 2 fiber pairs.

400G Cables: 400G DAC & AOC

400G Direct Attached Cable (DAC) is suitable for very short-distance data center interconnection and it is cost-efficient. Besides, it uses copper cable as the transmission media. Typically, there are two types of DACs: passive copper cables for distance from 0 to 5m and active copper cables for distance from 5 to 15m.400G Direct Attached Cable

Different from 400G DAC, 400G Active Optical Cable (AOC) uses fiber optical fiber as the transmission media. It is equivalent to using transceivers and separate cables. Besides, 400G AOCs support longer distance transmission than DACs, which can be up to 100m. They are also lighter and smaller than DACs, but they are more costly. Unlike DACs, AOCs are not affected by Electromagnetic Interference (EMI). You can check this article for more details on the 400G DAC and AOC.400G Active Optical Cable

Apart from 400G to 400G DAC/AOC, there are also 400G DAC/AOC breakout cables, such as 400G QSFP-DD to 4x100G QSFP56 DAC breakout cable, 400G QSFP-DD to 2x200G QSFP56 breakout AOC cable, and 400G QSFP-DD to 8x50G SFP56 DAC Breakout Cable. In this article, we’ll focus on 400G to 400G connection over 400G DAC/AOC.

Common 400G Transceiver/DAC/AOC Scenarios

Connectivity from ToR Switch to Server (Up to 2.5m)

400G DAC Connectivity

400G DAC is the perfect solution for linked switches and servers inside racks. As shown in the figure above, 400G QSFP-DD DAC is used to connect 400G ToR switch and server in a 42U server cabinet. Because the height of the 42U server cabinet is only about 2 meters and 400G DAC is also cost-efficient, the 400G DAC becomes an ideal solution for short-distance transmission inside cabinet.

Connectivity from EoR Switch to Server (Up to 30m)400G AOC Connectivity

The 400G AOC usually connects switches and servers between racks in a data center. As the picture above shows, the 400G EoR switch is connected to the server rack and aggregation rack through 400G QSFP-DD AOC. Since the 400G AOC uses optical fiber as the transmission media, it can achieve longer distance transmission and higher bandwidth than the 400G DAC. Besides, it is also used to connect separate switches to create a larger switch architecture.

Connectivity from ToR Switch to Server (Up to 100m)400GBASE-SR8 QSFP-DD transceivers connection

400GBASE-SR8 QSFP-DD transceivers can be used for leaf-spine switches interconnection and the transmission distance can reach 100m over OM4 MMF with MTP/MPO-16 connector.

Connectivity from ToR Switch to Server (Up to 150m)400GBASE-SR4.2 QSFP-DD transceivers connection

Different from 400GBASE-SR8 QSFP-DD transceivers, the 400GBASE-SR4.2 QSFP-DD transceivers support 150m distance transmission over MPO/MTP-12 OM5 MMF.

Connectivity from ToR Switch to Server (Up to 500m)400GBASE-DR4 QSFP-DD transceivers connection

400GBASE-DR4 QSFP-DD transceivers support up to 500m transmission distance over OS2 SMF with MPO/MTP-12 connector.

Data Center Interconnection (up to 2-120km)Data Center Interconnection

  • Up to 2km: Usually, the data center interconnection needs transceivers that support longer distance and higher bandwidth transmission. 400GBASE-FR4 QSFP-DD transceivers support link lengths of up to 2km over OS2 SMF with duplex LC connector.
  • Up to 10km: For data center interconnection over 2km, 400GBASE-LR8 QSFP-DD transceiver is a better choice. It can support data transmission distances of up to 10km over OS2 SMF.
  • Up to 40km: 400GBASE-ER8 QSFP-DD enables link lengths of up to 40km over OS2 SMF with duplex LC connectors. Besides, it also features low-power, high-density and high-speed, which is a high-efficient option for 400G data center interconnection. However, it uses EML laser, APD detector, and also needs to use Mux combiner and Demux splitter, which leads to high cost.
  • Up to 120km: As for hyperscale data center interconnection, only 400G-ZR CSFP Coherent optical modules can meet the demands, supporting OS2 SMF transmission distances up to 120km.

Conclusion

In conclusion, 400G transceivers and 400G AOC and DAC cables are effective choices for the 400G data center connectivity. Both 400G AOC and DAC are more suitable for short distance transmission. However, the 400G AOC supports higher data transfer speed, while the 400G DAC is more cost-efficient. As for 400G transceivers, the application scenarios are more abundant. Data center operators should make appropriate choices based on their actual needs.

Article Source:

https://community.fs.com/blog/400g-transceiver-dac-or-aoc-how-to-choose.html

Related Articles:

https://community.fs.com/blog/faqs-on-400g-transceivers-and-cables.html
https://community.fs.com/blog/fs-400g-cabling-solutions-dac-aoc-and-fiber-cabling.html

Why Choose FS Optics for 400G Deployment?

Share

The increase in global data traffic has fostered the development of optical devices, which has led to data centers facing increasing challenges in cloud access, processing power, storage, and transmission bandwidth. Because of this, the 400G transceiver market is growing rapidly, and the choices of general optical modules are gradually diversifying. Customers also have many concerns when choosing optical products, so how do FS 400G transceivers solve these concerns to meet the needs, please read this article.

Concerns for Choosing 400G Transceivers

The choice of general 400G optical modules will face many problems. Customers usually struggle with how to choose good quality 400G optical modules and have some concerns, such as the choice of suppliers, the performance and compatibility of the optical module, etc.

General Transceivers or OEM Optics?

It is well known that general optical modules have cost advantages over their OEM counterparts and are provided on demand. In the rapidly growing 400G transceiver market, diversified suppliers have increased the difficulty of selecting general optical modules, and there also be some problems: incompatibility with existing equipment, prone to network delays leading to system restarts, or other unqualified after-sales services. Therefore, it is important to choose a supplier you trust.

400G Transceiver Quality Issues

The most common quality issues with 400G transceivers from general optical product suppliers are compatibility and reliability. Because ensuring compatibility means achieving high precision when coding optics to interoperate with OEM hardware, this problem is common among inexperienced suppliers. Failures caused by these quality issues can range from a lack of relevant functionality in equipment operation to catastrophic failures such as network, system reboots, or network outages. Whether the long-term performance of the optical module can remain as efficient as the first deployment is also a factor that customers need to consider. Otherwise, it will cause trouble later.

Consequences of Incorrect 400G Transceivers

OEM warranty is a recurring issue. There is a saying that using general products in their OEM hardware voids the warranty. But the optical module itself is unlikely to damage OEM equipment because 400G ethernet QSFP modules convert electrical data from devices into optical signals, which can prove that there is no input power from the optical port to damage the device.

At this point, the optical module will not function properly or appear to be incompatible with your equipment environment, and the IT manager needs to re-plan to take the necessary alternative strategies to resolve the failure. In this case, it takes a certain amount of time to communicate with optical product suppliers and arrange for engineers to conduct fault diagnosis. If a problem is diagnosed, the faulty product should be returned and a new product delivered for redeployment and equipment testing. Essentially, the resolution to these problems costs a lot of time and effort for IT managers, adding to the cost of wasted time.

Benefits of FS 400G Optical Modules

Compared with the existing optical module supplier market, FS optical modules have certain OEM equipment compatibility and reliability, can meet various transmission needs, and have high-quality after-sales service. At the same time, FS also has a one-stop procurement platform to support the procurement of a set of 400G optical products, which greatly improves your purchase efficiency and saves costs.

Transceiver Reliability

How FS ensures the reliability of its 400G optics? It is first reflected in their production process. FS 400G optical modules adopt the original equipment manufacturer (OEM) compatibility programming core capability, featuring interoperability with multiple suppliers. These transceivers provide high-quality optical connections at a lower cost and the same performance quality as the OEM brand. Also, the transceiver’s standardized features to OEM specifications ensure high component quality and suitability.

The second is the rigorous testing of the transceivers. FS optical modules are tested for compatibility on equipment by a professional technical team, as a way to eliminate errors and reduce the need for workarounds and system downtime. Even the equipment in use in your computer room can be tested to meet your expectations. This reduces the risk of network failures and ensures that the business remains up and running, providing uninterrupted service to customers. FS adheres to a 99.98% reliability rating, allowing you to enjoy quality products and services.

Multiple Choice and Trusted Services

FS can provide a variety of transceivers, and some may not be available from the OEM. FS has set up a global warehouse base with a large inventory of optical modules to connectivity needs of your network projects.

FS laboratory has an experienced team of professional technical experts and features perfect after-sales service. If you have any questions about the use of the product, you can directly contact the one-to-one sales representative to solve it. For example, if you want to know whether Juniper QSFP/OSFP works on Cisco platforms, FS will tell you based on specific lab tests and experience. Moreover, when you need to perform remote compatibility testing, the FS remote demo service can provide you with a better testing experience.

400G transceivers

Cost-effectiveness

When you choose optical products for your 400G project, 400G optical transceivers may not be the only thing you require, network devices, optical cables and corresponding accessories, such as switches, wiring, or other accessories are also needed. Of course, when applying these components, you also need to consider their loss and fit. To better solve this problem, the FS 400G product series supports one-stop procurement to help you solve your deployment problems and make the products perfectly fit your needs, which can improve your procurement efficiency and save manpower and material costs. In addition, with its professional capabilities, FS can complete the testing, collection, distribution, acceptance, after-sales, and other work of the products you need, which is convenient for your equipment maintenance and management.

A one-stop procurement approach can reduce a company’s overall cost of investment (COI). For example, replacing 9 individual SKUs with one SKU at a simple price can simplify the procurement, inventory, and operational issues of optical modules. This reduces the time spent on multiple 400G optical module suppliers, and a high-quality supplier like FS can spend valuable time in other more important places, you can save up to 70% of the cost.

FS 400G product family

Explore FS 400G Optics Solutions

Facing the diverse general optic product supplier market, you should choose a supplier you trust, which will have a huge influence on your business. FS can be one of your best options as a general optical product supplier. With a professional technical team, global warehousing capabilities, remote demo services, and 400G transceivers with the same OEM performance, FS can ensure your high-performance network, optimize your operational efficiency, and minimize waste of time, effort, and budget.

Article Source:

https://community.fs.com/news/why-choose-fs-optics-for-400g-deployment.html

Related Articles:

https://community.fs.com/blog/faqs-about-fs-400g-transceivers.html
https://community.fs.com/blog/infographic-types-of-400g-transceivers.html