Category Archives: Fiber Optic Transceivers

How to Select Transceivers for White Box Switches?

FacebookTwitterGoogle+LinkedInRedditTumblrShare

White box switches, also known as bare-metal switches, have gained popularity in data centers. Because they provide high performance switching and enable users a broader choice in software and hardware purchase at the same time. However, it’s the openness of white box switches that leads to other problems: is there any limitation on the use of optic modules for white box switches? How to choose an optical transceiver for white box switches?

white box switches

Considerations When Selecting Transceiver for White Box Switches

As we know, white box switch vendors usually sell switches either as bare-metal devices or preloaded with any compatible operating system, as requested by the purchaser. And there are many hardware and software vendors on the market. In order to achieve the desired performance with white box switches, some users may purchase hardware and software from different vendors. For example, one network operator may buy a white box switch from Dell, FS or HPE, but he will get a network operating system from Cumulus Linux. There is no fault of this action, but it will bring another problem—which type of optical transceivers can be used for the switch?

optical transceiver

According to the situation of white box switches on the market, there are two considerations should be taken into account when choosing an optical transceiver for white box switches.

The first one is the operating system (OS) of the switch. It’s known to us that there are various OS vendors like Cumulus Linux, Pica8 and HPE. They develop their own OS for their white box switches to get more market shares. Some of these companies also have their own optical transceiver production line. And some of them do not preclude the use of any industry-standard transceiver, which provide a freely choice for users to source standard components directly from manufacturers or from a broad range of re-sellers. Therefore, the transceivers from the corresponding OS vendor can be used for their white box switches.

Another one is the optical transceiver itself. Not all white box switch vendors can provide transceivers for their switches. And some brand OEMs add enhancements to their standardized optic modules, which increases more cost on optics. However, some white box switch vendors look forward to seeing an open standard without vendor lock-in. Therefore, cost-effective compatible optical transceivers that follow MSA SFF specification is another choice for white box switches. Among these compatible optical modules, most generic optical transceivers on the market can be used for white box switches.

Optical Transceiver Solution for White Box Switches

White box switches have been the way for web-scale data center operators who are able to drive down the cost and drive up efficiency and flexibility of their IT infrastructure, especially in some big companies like Facebook, Google or Amazon. And there is a growing group of companies that also want the same level of efficiency web-scale operators have achieved. How to realize this? More white box switches are required without question.

Under this situation, providers like FS.COM supplies several types of 10G, 25G, 40G and 100G network switches preloaded with FS OS or Cumulus OS for small and medium size networks or data centers. And all the generic optical transceivers in FS.COM are available for white box network switches.

Are White Box Switches Equal to OEM Switches?

With a low cost and excellent performance, white box switch has been a hot topic in the past few years. However, the basic definition of white box switch is still vague and ambiguous as a result of various reasons. Firstly, no one has ever made an accurate and standard conception of white box switches before; secondly, manufacturer with different interests and demands will deliberately obscure the definition of white box switch; thirdly, people who are unaware of the truth of Internet tend to be wrongly informed, which also lead to chaos in its definition. Some even simply equate a white box switch with an OEM switch. So what is a white box switch exactly?

white box switch

How to Understand White Box Switches?

According to its literal meaning, white box switches refer to switches without a label. However, there exists a deep connotation in white box switches which means this kind of switches doesn’t focus on brand. Based on this core idea, to better understand white box switches, here we might as well divide them into the following three models:

  • Bare-mental switch. It is the fundamental type of white box switch with no network operating system loaded on them except a boot loader. Customers can purchase a software through a third party like Big Switch, Cumulus, and Pica8 or even write a software by themselves. They ask for hardware support from hardware vendors and software support from software vendors.
  • White box switch. In this model, the supplier will offer switches with both hardware and software (the supplier only provide one of them, either hardware or software, but they got the authority of another from their partners). So customers can seek support for both hardware and software from one supplier. Besides, there are options for customers to choose for both hardware and software.
  • OEM switches. The hardware and software of the switch are manufactured and provided by an OEM (original equipment manufacturer). These OEMs design and manufacture a switch as specified by another company to be rebranded or not branded. This kind of switch is also called white box switch by many people. And suppliers offering this service are called white box supplier, especially when the supplier is small and not well-known.
The Market for White Box Switches

With a wide choice of networking software based on low-cost, commodity hardware, white box switches are bound to have a vast market in the future. Also, with the deployment of SDN, there is an increasing interest in white box switches within the IT community. In the previous text, we have divided white box switches into three types. Next, I will analyze the market for white box switches based upon this classification.

The market for white box switches

  • Bare-mental switches have been most widely used with a customer group mainly from networking giants like Google, Facebook, and Microsoft. They purchase a bare-mental switch and develop networking software by themselves. In china, large companies like Baidu, Alibaba, Tecent, and JD also tried this model, with Baidu being the most successful example. The reason why these giants chose such a kind of white box switch is that they are confident and capable enough to handle the development and operation of the software for a switch. Besides, these major technology firm have an extremely large-scale network, which requires them to control the network completely by themselves.
  • The customers for the second type are mainly distributed abroad with only a few in China. They mainly come from large financial companies, international data corporation and some network operators, whose size may only behind those internet giants. Cost saving is the most important driving force for them to buy a white box switch. Also, part of these enterprises chose it just for the differentiated operating system provided by white box suppliers who are willing to satisfy their specific demands through customized service.
  • The customer for the third type is distributed both at home and abroad. Although the market for this part is smaller than the first two, it has the largest potential for its customer group involving a large number of VARs (value added resellers), system integrators, IT products providers and many medium-sized clients. They adopt a white box switch for varied reasons such as improving the production line and saving costs.
Summary

Through this essay, we can see clearly that white box switch is much more than an OEM switch and the latter can be classified as one kind of the former. With a lower cost, excellent performance and huge market potential, white box switch will definitely grow up as the mainstream for switch adoption.

100G QSFP28 PAM4 or Coherent CFP?

The ever-increasing need for higher data rate in mobile data traffic, data centers and cloud services has pushed the access streams from 2.5Gb/s to 100Gb/s, and is demanding for 100Gb/s beyond without a stop. In today’s core network that has deployed 100G rates, there are QSFP28 optical transceivers including SR4, PSM4, CWDM4, LR4, ER4, etc., serving for a maximum 25km transmission distance. And there are 100G AOC, DAC and breakout cables generally for applications of tens of meters. 100G CFP/CFP2 modules including SR10, LR4 and ER4 support transmission distances of 150m to 40km. Until recent years, the telecom service providers are adopting new 100G DWDM technologies in their high capacity and long distance backbone applications. Coherent 100G DWDM transceivers are the first to be deployed for 100G long-haul applications, and then new technologies like PAM4 (Pulse Amplitude Modulation) are developed to meet lengths requirements for 100G metro network. This post is to discuss the issues on coherent and PAM4 100G DWDM transceivers.

Overview on 100G DWDM Transceivers

In the past few years, the adoption of 100G DWDM technologies is mainly focused on coherent DWDM optical transceivers, including CFP and CFP2. Until the year 2016, Inphi (a specialist in this area) offers pluggable 100G PAM4 QSFP28 DWDM transceivers to support 80km data center interconnect (DCI). The alternative for 100G DWDM coherent transceiver is given much attention. Besides, this new option for 100G DWDM transceiver also arouses hot discussion on which to choose. Knowing the characteristics and suited applications of them could help in selection.

QSFP28 PAM4 and Coherent CFP/CFP2

There are significant differences between QSFP28 PAM4 transceivers and coherent CFP/CFP2 transceivers, but they also have some relations in 100G applications. Contents below will go to details of these optical modules.

QSFP28 PAM4

Before the announcement of PAM4, binary NRZ (non-return to zero) modulation format is used for 40G and 100G long-haul transmission systems. PAM4 has four distinct levels to encode two bits of data, essentially doubling the bandwidth of a connection. Currently the single-wavelength PAM4 modulation scheme is considered the most cost-effective, efficient enabler of 100G and beyond in the data center. The 100G DWDM transceiver utilizing PAM4 signaling is in QSFP28 form factor. The advantage is that the customers who want to build an embedded DWDM network can use this transceiver directly in the switch. On this side, it is simple and cost-effective solution. But there are some prerequisites: it needs amplification to get out of the blocks and dispersion compensation to go beyond 5-6km. Therefore, a separate DWDM multiplexer with an amplification system and dispersion compensation is required to connect data canters together.

single wavelength PAM4 100G

In another case, if the QSFP28 PAM4 module is added to an existing DWDM network, it must be a network already having right dispersion compensation modules (DCMs) and amplification system in place; if it is not, changes are required when QSFP28 PAM4 is later added.

Coherent CFP

CFP digital coherent optics (DCO) have a high speed digital signal processing (DSP) chip built in. They do not require separate DCMs. This is what makes CFP different from QSFP28. Instead, they have electronic dispersion compensation built in. Although the built-in DSP requires more power and adds cost in components, it releases the switch vendors from adding DSPs to their equipment. Coherent CFPs enables transmission distance of more than 1000km between sites.

CFP2 analog coherent optic (ACO) is half the width of the CFP. Existing CFP2 coherent DWDM optical transceivers are analog and require a separate DSP on the host board to take the full advantages of the coherent features. So it is suited for switch vendors who have fitted such a DSP, but it adds additional cost and power consumption on the main board.

CFP2 digital coherent optic (DCO), expected to be released in the coming two years, is more optimized than CFP2 ACO in that it has built-in DSP. This component will open up to all switch vendors using CFP2 without DSP. With different coherent CFPs optional, customers can pay only for what they need when they need it.

QSFP28 PAM4 or Coherent CFP?

This really should depend on the applications. According to ACG research (an analyst and consulting firm that focuses on the service providers’ networking and the telecom industry), the 100G PAM4 solution and coherent DWDM solution, together with IEEE802.3ba, cover different portions of the optical fiber reach in the data center interconnect. So when deploying a long distance 100G DWDM network with DWDM transceivers, the required transmission distance and available equipment should be taken into consideration when choosing a suitable pluggable module.

IEEE, PAM4, OIF coherent optical reaches

Conclusion

Using pluggable transceivers for embedded DWDM, where the DWDM functionality is in the transceiver and not a separate DWDM converter platform, offers the ultimate solution in terms of cost and simplicity. Both QSFP28 PAM4 and coherent CFP/CFP2 are all suited to this approach. They can be used for embedded DWDM networking or as part of an existing DWDM installation. They all enable the advantages of pluggable modules: simple installation, easy spares handling, lower cost of ownership and quick return on invest.

Can I Use the QSFP+ Optics on QSFP28 Port?

100G Ethernet will have a larger share of network equipment market in 2017, according to Infonetics Research. But we can’t neglect the fact that 100G technology and relevant optics are still under development. Users who plan to layout 100G network for long-hual infrastructures usually met some problems. For example, currently, the qsfp28 optics on the market can only support up to 10 km (QSFP28 100GBASE-LR4) with WDM technology, which means you have to buy the extra expensive WDM devices. For applications beyond 10km, QSFP28 optical transceivers cannot reach it. Therefore, users have to use 40G QSFP+ optics on 100G switches. But here comes a problem, can I use the QSFP+ optics on the QSFP28 port of the 100G switch? If this is okay, can I use the QSFP28 modules on the QSFP+ port? This article discusses the feasibility of this solution and provides a foundational guidance of how to configure the 100G switches.

For Most Switches, QSFP+ Can Be Used on QSFP28 Port

As we all know that QSFP28 transceivers have the same form factor as the QSFP optical transceiver. The former has just 4 electrical lanes that can be used as a 4x10GbE, 4x25GbE, while the latter supports 40G ( 4x10G). So from all of this information, a QSFP28 module breaks out into either 4x25G or 4x10G lanes, which depends on the transceiver used. This is the same case with the SFP28 transceivers that accept SFP+ transceivers and run at the lower 10G speed.

QSFP can work on the QSFP28 ports

A 100G QSFP28 port can generally take either a QSFP+ or QSFP28 optics. If the QSFP28 optics support 25G lanes, then it can operate 4x25G breakout, 2x50G breakout or 1x100G (no breakout). The QSFP+ optic supports 10G lanes, so it can run 4x10GE or 1x40GE. If you use the QSFP transceivers in QSFP28 port, keep in mind that you have both single-mode and multimode (SR/LR) optical transceivers and twinax/AOC options that are available.

In all Cases, QSFP28 Optics Cannot Be Used on QSFP+ Port

SFP+ can’t auto-negotiate to support SFP module, similarly QSFP28 modules can not be used on the QSFP port, either. There is the rule about mixing optical transceivers with different speed—it basically comes down to the optic and the port, vice versa. Both ends of the two modules have to match and form factor needs to match as well. Additionally, port speed needs to be equal or greater than the optic used.

How to Configure 100G Switch?

For those who are not familiar with how to do the port configuration, you can have a look at the following part.

  • How do you change 100G QSFP ports to support QSFP+ 40GbE transceivers?

Configure the desired speed as 40G:
(config)# interface Ethernet1/1
(config-if-Et1/1)# speed forced 40gfull

  • How do you change 100G QSFP ports to support 4x10GbE mode using a QSFP+ transceiver?

Configure the desired speed as 10G:
(config)# interface Ethernet1/1 – 4
(config-if-Et1/1-4)# speed forced 10000full

  • How do you change 100G QSFP ports from 100GbE mode to 4x25G mode?

Configure the desired speed as 25G:
(config)# interface Ethernet1/1 – 4
(config-if-Et1/1-4)# speed forced 25gfull

  • How do you change 100G QSFP ports back to the default mode?

Configure the port to default mode:
(config)# interface Ethernet1/1-4
(config-if-Et1/1)# no speed

Note that if you have no experience in port configuration, it is advisable for you to consult your switch vendor in advance.

Conclusion

To sum up, QSFP+ modules can be used on the QSFP28 ports, but QSFP28 transceivers cannot transmit 100Gbps on the QSFP+ port. When using the QSFP optics on the QSFP28 port, don’t forget to configure your switch (follow the above instructions). To make sure the smooth network transmission, you need to ensure the connectors on both ends are the same and no manufacturer compatibility issue exists.

The Basics of 1000BASE-SX and 1000BASE-LX SFP

Gigabit Ethernet has been regarded as a huge breakthrough of telecom industry by offering speeds of up to 100Mbps. Gigabit Ethernet is a standard for transmitting Ethernet frames at a rate of a gigabit per second. There are five physical layer standards for Gigabit Ethernet using optical fiber (1000BASE-X), twisted pair cable (1000BASE-T), or shielded balanced copper cable (1000BASE-CX). 1000BASE-LX and 1000BASE-SX SFP are two common types of optical transceiver modules in the market. Today’s topic will be a brief introduction to 1000BASE-LX and 1000BASE-SX SFP transceivers.

1000BASE in these terms refers to a Gigabit Ethernet connection that uses the unfiltered cable for transmission. “X” means 4B/5B block coding for Fast Ethernet or 8B/10B block coding for Gigabit Ethernet. “L” means long-range single- or multi-mode optical cable (100 m to 10 km). “S” means short-range multi-mode optical cable (less than 100 m).

1000BASE-SX
1000BASE-SX is a fiber optic Gigabit Ethernet standard for operation over multi-mode fiber using a 770 to 860 nanometer, near infrared (NIR) light wavelength. The standard specifies a distance capability between 220 meters and 550 meters. In practice, with good quality fiber, optics, and terminations, 1000BASE-SX will usually work over significantly longer distances. This standard is highly popular for intra-building links in large office buildings, co-location facilities and carrier neutral internet exchanges. 1000BASE-SX SFP works at 850nm wavelength and used only for the purposed of the multimode optical fiber with an LC connector. 1000BASE-SX SFP traditional 50 microns of multimode optical fiber link is 550 meters high and 62.5 micron fiber distributed data interface (FDDI) multimode optical fiber is up to 220 meters. Take EX-SFP-1GE-SX as an example, its maximum distance is 550m with DOM support. The 1000Base-SX standard supports the multimode fiber distances shown in table 1.

1000Base-SX standard

1000BASE-LX
Specified in IEEE 802.3 Clause 38, 1000BASE-LX is a type of standard for implementing Gigabit Ethernet networks. The “LX” in 1000BASE-LX stands for long wavelength, indicating that this version of Gigabit Ethernet is intended for use with long-wavelength transmissions (1270–1355 nm) over long cable runs of fiber optic cabling. 1000BASE-LX can run over both single mode fiber and multimode fiber with a distance of up to 5 km and 550 m, respectively. For link distances greater than 300 m, the use of a special launch conditioning patch cord may be required. 1000BASE-LX is intended mainly for connecting high-speed hubs, Ethernet switches, and routers together in different wiring closets or buildings using long cabling runs, and developed to support longer-length multimode building fiber backbones and single-mode campus backbones. E1MG-LX-OM is Brocade 1000BASE-LX SFP that operates over a wavelength of 1310nm for 10 km.

1000BASE-LX SFP

Difference Between LX, LH and LX/LH
Many vendors use both LH and LX/LH for certain SFP modules, this SFP type is similar with the other SFPs in basic working principle and size. However, LH and LX/LH aren’t a Gigabit Ethernet standard and are compatible with 1000BASE-LX standard. 1000BASE-LH SFP operates a distance up to 70km over single-mode fiber. For example, Cisco MGBLH1 1000BASE-LH SFP covers a link length of 40km that make itself perfect for long-reach application. 1000BASE-LX/LH SFP can operate on standard single-mode fiber-optic link spans of up to 10 km and up to 550 m on any multimode fibers. In addition, when used over legacy multimode fiber type, the transmitter should be coupled through a mode conditioning patch cable.

Conclusion
1000BASE SFP transceiver is the most commonly used component for Gigabit Ethernet application. With so many types available in the market, careful notice should be given to the range of differences, both in distance and price of multimode and single-mode fiber optics. Fiberstore offers a large amount of in-stock 1000BASE SFP transceivers which are compatible for Cisco, Juniper, Dell, Finisar, Brocade, or Netgear in various options. If you have any requirement of our products, please send your request to us.

Still Have Problems with Quanta LB4M and LB6M 10G Switches?

With the growth of virtualization, cloud-based services and applications like VoIP, video streaming and IP surveillance, various 10G switches with diverse functions spring out on the market. Quanta LB4M and LB6M 10G switches are two types popular 10G switches among them. However, there is few user manuals on the Internet, which brings inconveniences for users. This post intends to give a simple introduction to Quanta LB4M and LB6M 10G switches and some solutions for the common problems that may arise in their operating process.

Basis of Quanta LB4M and LB6M 10G Switches

The Quanta LB4M is a modular Gigabit Ethernet backbone switch designed for adaptability and scalability. This switch supports up to 48 Gigabit Ethernet ports to function as a central distribution hub for other switches, switch groups, or routers. And it offers 2 SFP+ interfaces for 10G port on the daughter board. While the Quanta LB6M switch provides 24 10GbE SFP+ ports and 4 1000BASE-T ports, which makes it more popular than LB4M. For these two switches, many users think highly of its performance. But there are also some passive remarks due to the limited documentation.

quanta lb4m & lb6m

Problem & Solution

If you have searched on the Internet, you will find that there are so many questions about Quanta LB4M and LB6M switches in all aspects like lack of instructive manuals, the operating issues, IP setup problems, etc. Here is a collection of several popular ones in discussion forums and blogs. Hope it will help you.

Quanta LB4M MAC Entry Problem

Use the LB4M in an active/passive configuration for SAN (Storage Area Networking). The two SAN nodes of the user have HA (fail over) and for that it uses a virtual IP which is moved between the two head nodes in case of failure. But the virtual IP MAC is missing from the LB4M switches “mac-addr-table”, which in turn leads to this virtual IP to be mirrored to all ports on that vlan.

Solution: right MAC (Media Access Control) mapping is the core of Ethernet switches. The first choice is to determine whether the MAC address of the switches is valid. Then pick a random address with the same 3-byte prefix as one of your physical MAC addresses and see if the switch accepts it. Another choice is to check the port security where the switch only accepts traffic from a single MAC address, either hard-coded in the config or the first one “seen” on that port.

LB4M Ports Are Deactivated and Backup Image Is Corrupt

Bought a Quanta LB4M and configured a management IP for the Web interface. After rebooting the switch as told, the screen showed that the crc-checksum for both the first and the backup image are corrupt, and another image is needed via the modem.

Solution: try to get upload an image via the modem to fix the problem. And then test it to check if the switch works.

Connect Dell 2848 with SFP to Quanta LB6M?

Dell 2848 switch has four SFP ports, while the Quanta LB6M has 24 10GbE SFP+ ports and 4 1000BASE-T ports. And other devices also need to be connected with. Then how to connect Dell 2848 with Quanta LB6M? The data center is currently running on a 1Gb Cat 6 cables.

Solution: using 10Gb SFP+ LC modules for the Quanta LB6M, 1Gb SFP LC modules for the Dell 2848 and then run MM fiber. Since SFP+ and SFP ports are not compatible, OEM services are another choice to solve this type of problem. FS.COM offers various kinds of customized service to meet customers’ different demands.

How to Avoid the Problems Mentioned Above?

It is undeniable that the Quanta LB4M and LB6M 10G switches are popular among users, which can be seen from the remarks in some forums. But since there is few instructive documents to describe these two types of switches, it will be difficult to solve the problems met in the operating process immediately. FS.COM supplies various kinds of 10G switches to meet the demand of Gigabit access or aggregation for enterprise networks and operators customers. Other 10G optics like 10G transceiver and 10G DAC & AOC are also available. Welcome to visit our website www.fs.com for more information.

Simplify the Implementation of High Density 100G CXP

Data center bandwidth demands continue to grow, requiring higher capacity and throughput. The 100G/120G Ethernet is no longer new in data center optic market, but it’s still a complex act to efficiently and effectively upgrade existing 10G/40G architectures to these higher data rates, especially in a space-constrained application. In order to explore the approaches of smooth migration to high density 100G/120G network, this post will take multimode 100G CXP module as example, and illustrate some simplified scenarios when upgrading to these higher data rates.

Overview on 100G CXP Module

High density 100G CXP is very popular in the implementations up to 100Gbps for saving-space. This deployment can then leverage the 10G-per-lane channels to distribute the 10G data anywhere in the data center. 100G CXP module is designed to connect with an MTP/MPO-24 connector, which can be divided to 10x10G or 12x10G transceiver pairs. For 120G CXP, it is also possible to separate the signals into three QSFP+ transceivers, and then to three groups of 4x10G transceivers by using an 8 fibers MTP/MPO to LC breakout module or cable.

Direct Connectivity for two CXPs

For two 100GBASE-SR10 modules, direct link can be easily made via 100G MPO cable. For connecting two 120G CXPs, a cost-effective 24 fibers MPO trunk can also work well. Here uses an 24 fibers MPO (female) to MPO (female) OM4 polarity B trunk cable.

direct link for two 100G/120G CXP modules

Figure 1: direct link for two 100G CXP modules.

Connectivity Methods for CXP and SFP+/QSFP+

In this part, the scenarios applied for 100G to 10G connection, and 120G to 40G or 10G connection will be explained.

100G to 10G

Figure 2 shows a direct link for one 100G CFP module and ten 10G SFP+ modules. By using the 24 fibers MPO to LC duplex harness cable, the whole 100G from the CFP transceiver is connected to ten SFP+ transceivers (two LC duplex legs are not used in this link). The fanout legs are available to be the same length or staggered type, so as to meet different applications.

direct link for a 100G CFP to 10x10G SFP+s

Figure 2: direct link for a 100G CFP to 10x10G SFP+s.

In figure 3, the interconnect for CFP and SFP+ transceivers is more flexible than the direct link. Here the 160 fibers MTP/MPO (male) breakout patch panel allows connectivity to any duplex path reachable by the patch panel. This method offers ultimate flexibility in allowing connectivity to any row, rack or shelf. Moreover, this breakout module can support up to eight groups of this 100G to 10x10G transmission. In such a high density link, it is suggested to use HD patch cables or LC uniboot patch cables to enable quicker and better cable management.

interconnect solution for 100G CFP to 10x10G SFP+s

Figure 3: interconnect solution for 100G CFP to 10x10G SFP+s.

120G to 10G and 40G

When directly connecting one 120G CXP to twelve 10G SFP+ transceivers, a 24 fibers MTP-24 to 12 LC harness cables can do the job well. Here we use a customized high density bend insensitive female MTP-24 to 12 LC duplex OM4 breakout cable.

 direct link for 120G to 12x10G transceivers

Figure 4: direct link for 120G to 12x10G transceivers.

An option for breaking out a 120G CXP to three 40G QSFP+s is to use the 1×3 MTP/MPO conversion harness cable. Figure 5 illustrates implementation of a 1×24 strand MTP to 3×8 strand MTP conversion harness cable. Like the 12x10G segregation mentioned above, once split, the 3×8-fiber QSFP+ channels can be distributed through patch panels and 12-fiber based trunking to any area of the data center.

hybrid link for 120G CXP to 40G QSFP+s and 10G SFP+s

Figure 5: hybrid link for 120G CXP to 40G QSFP+s and 10G SFP+s.

Conclusion

This article has illustrated some simplified implementation examples of 100G CXP modules. 24 fibers MTP/MPO trunk cable are suited for connecting two CXP modules. Breakout cables can achieve quick connection for CXP and QSFP+ or SFP+ optics, but when flexible patching is needed in the link, it would be better to adopt breakout patch panel. If you need 100G optics, FS.COM can offer you fully tested compatible 100GBASE-SR10, 100GBASE-SR4, 100GBASE-LR4 and 100GBASE-ER4 transceivers, etc.

What Is IPv4 & IPv6 Dual Stack and MPLS Technique?

We usually see the switch products description as the following “Hardware support for IPv4 & IPv6 dual stack and rich MPLS features provide customers with a wealth of business features and routing functions, as well as hardware-based security features”. Then, what’s the IPv4 & IPv6 dual stack? What does the “MPLS” mean?

What Is IPv4 & IPv6 Dual Stack?
As we all know, the entire Internet world is currently running IPv4 (Internet Protocol Version 4). But we’ve run completely out of current IPv4-type addresses. So a new IP address format called IPv6 appears. The IPv6 format creates an IP address with a much longer number, which allows for a great many more IP addresses—so many, we should never run out again! Here’s an example of the difference between the two formats:

  • Sample IPv4 address: 192.168.1.2
  • Sample IPv6 address: 2001:0578:0123:4567:89AB:CDEF:0123:4567

One significant problem is that the two IP address formats aren’t compatible and total conversion to IPv6 is a way off. Internet Service Providers (ISPs) need to provide their customers with both IPv4 and IPv6 service. How to solve this problem? The answer is IPv4 & IPv6 dual stack. With the dual stack solution, every networking device, server, switch, router and firewall in an ISP’s network will be configured with both IPv4 and IPv6 connectivity capabilities. Most importantly, dual stack technology allows ISPs to process IPv4 and IPv6 data traffic simultaneously.

IPv4 & IPv6 Dual Stack

MPLS Technique Explanation
MPLS stands for “Multi-Protocol Label Switching”. It is a type of data-carrying technique for high-performance telecommunications networks. In a traditional IP network, each router performs an IP lookup, determines a next-hop based on its routing table, and forwards the packet to that next-hop. Rinse and repeat for every router, each making its own independent routing decisions, until the final destination is reached.

Multi-Protocol Label Switching_mpls

MPLS does “label switching” instead. The first device does a routing lookup, just like before. But instead of finding a next-hop, it finds the final destination router. And it finds a pre-determined path from “here” to that final router. The router applies a “label” based on this information. Future routers use the label to route the traffic without needing to perform any additional IP lookups. At the final destination router the label is removed. And the packet is delivered via normal IP routing.

Due to the labeling technology, the speed of performing lookups for destinations and routing is much faster than the standard IP table lookups non-MPLS routers have to perform. Besides, MPLS networks achieve greater Quality of Service (QoS) for their customers. FS.COM S5800-48F4S routing switches support for IPv4 & IPv6 dual stack and rich MPLS features and enhanced multicast and QoS capabilities can provide customers with a wealth of business features and routing functions, as well as hardware-based security features.

Layer 2 vs Layer 3 Switch: What’s the Difference?

Over the years, the average network has been dominated by the Layer 2 switch. Now as network complexity increases and applications demand greater functions from the network, Layer 3 switches are coming out of the data center and high level enterprise settings. Why this happens? What’s the difference between Layer 2 and Layer 3 switch? Which one should I deploy?

Layer 2 vs Layer 3 Switch
The main function of a Layer 2 is to help the traffic from devices within a LAN reach each other. A Layer 2 switch does this by keeping a table of all the MAC addresses it has learned and what physical port they can be found on. The MAC address is something that operates within Layer 2 of the OSI model (what defines how networks operate). Traffic being switched by MAC address is isolated within the LAN those devices are using. Therefore, when you need traffic to cross between LANs (or VLANs) is when we need a Layer 3 switch.

Layer 2 Switch

The most common Layer 3 device used in a network is the router. A router is able to look into the Layer 3 portion of traffic passing through it (the source and destination IP addresses) to decide how it should pass that traffic along. Since a router holds information about multiple networks (LAN WAN VLAN) it is also able to pass traffic along between these networks. This is routing. The Layer 3 switch functionally exists somewhere between being a Layer 2 switch and being a Gateway Router. It can be best described by what more it does compared to a Layer 2 switch and what less it does compared to a Gateway Router.

Layer 3 Switch

What Makes Layer 3 Switch Different?
When comparing the Layer 2 switch to a Layer 3 switch the first thing to look at is what additional software functionality you are getting. When a switch supports Dynamic Routing Protocols, it’s no longer a strictly Layer 2 switch. Because static routing allows traffic to be routed between VLANs. In fact, the switches that add only Static Routing to their software features are considered to be somewhere between a Layer 2 and full Layer 3 switch. Sometimes called Layer 2+ or Layer 3 Lite. Unlike Layer 2+ switch, Layer 3 switch is Dynamic Routing ,which are used to link large networks together and share routing tables between them. They can also allow for dynamic routing of multicast traffic on the network.

To Choose a Layer 2 Switch or Layer 3 Switch?
Now that we know the difference between the two layers, what metrics would you choose one over the other comes down to the flexibility of being able to route the packets. If you need to send data within a LAN, use Layer 2 switch. If you need to send the data to other buildings on campus or to a client site, use Layer 3 switch. FS.COM provides a series of Layer2/3 10G/40G/100G switches to meet Data Center and Enterprise Ethernet network requirements. If you are interested, welcome to visit our website www.fs.com or contact us via sales@fs.com for more detailed information.

100G CFP Modules Power and Connectors Comparison

In today’s market, only several vendors can provide 100G CFP modules, such as Cisco, Juniper, Brocade and Huawei. In this blog, I will compare the Cisco CFP modules and the Juniper CFP modules, and analyze the power and connectors of these modules.

100GBASE-SR10 CFP Modules
Both Cisco CFP-100G-SR10 and Juniper CFP-100GBASE-SR10 CFP module supports link lengths of 100 meters and 150 meters respectively on laser-optimized OM3 and OM4 multifiber cables. It primarily enables high-bandwidth 100-gigabit links over 24-fiber ribbon cables terminated with MPO/MTP-24 connectors. It can also be used in 10 x 10 Gigabit Ethernet mode along with ribbon to duplex fiber breakout cables for connectivity to ten 10GBASE-SR optical interfaces.

100GBASE-SR10 CFP Modules

100GBASE-LR4 CFP Modules
Both Cisco CFP-100G-LR4 and Juniper CFP-GEN2-100GBASE-LR4 CFP module supports a link length of 10 kilometers on standard duplex single-mode fiber (SMF, G.652). However, the connectors of Cisco CFP-100G-LR4 are duplex SC, and the connectors of Juniper CFP-GEN2-100GBASE-LR4 are duplex LC. 100 Gigabit Ethernet signal is carried over four wavelengths. Multiplexing and demultiplexing of the four wavelengths are managed within the device.

100GBASE-LR4 CFP Modules

100GBASE-ER4 CFP Modules
Both Cisco CFP-100G-ER4 and Juniper CFP-GEN2-CGE-ER4 CFP module can support link lengths up to 40 kilometers on standard duplex single-mode fiber (SMF, G.652). Like the 100GBASE-LR4 CFP modules, the connectors of Cisco CFP-100G-ER4 are duplex SC, and the connectors of Juniper CFP-GEN2-CGE-ER4 are duplex LC. Multiplexing and demultiplexing of the four wavelengths are managed within the device. The 100GBASE-ER4 CFP module meets the IEEE 802.3ba requirements for 100GBASE-ER4 performance and also supports Digital Optical Monitoring (DOM) of the transmit-and-receive optical signal levels.

Tx/Rx Power of Cisco and Juniper 100G CFP Modules
Minimum and maximum Tx/Rx Power of Cisco and Juniper 100G CFP Modules are displayed in the table below. We can see that there is no significant difference between Tx/Rx Power of Cisco and Juniper CFP modules.

P/N Connector Transmit Power Receive Power Wavelength
Cisco CFP-100G-SR10 OM3 100 m; OM4 150 m 24F-MPO/MTP min: -7.6 dBm
ma: -1.0 dBm
min: -9.5 dBm
max: 2.4 dBm
Ten lanes, 840 to 850 nm
Juniper CFP-100GBASE-SR10 OM3 100 m; OM4 150 m 24F-MPO/MTP min: -7.6 dBm
max: 2.4 dBm
min: -9.5 dBm
max: 2.4 dBm
840 through 860 nm
Cisco CFP-100G-LR4 10km duplpx SC min: -4.3 dBm
max: 4.5 dBm
min: -10.6 dBm
max: 4.5 dBm
Four lanes, 1295.6 nm, 1300.1 nm, 1304.6 nm, and 1309.1 nm
Juniper CFP-GEN2-100GBASE-LR4 10km duplpx LC min: -4.3 dBm
max: 4.5 dBm
min: -10.5 dBm
max: 4.5 dBm
1294.53 through 1296.59 nm
1299.02 through 1301.09 nm
1303.54 through 1305.63 nm
1308.09 through 1310.19 nm
Cisco CFP-100G-ER4 40km duplpx SC min: -2.9 dBm
max: 2.9 dBm
min: –20.9 dBm
max: 4.5 dBm
Same as CFP-100G-LR4
Juniper CFP-GEN2-CGE-ER4 40km duplpx LC min: -2.9 dBm
max: 2.9 dBm
min: –20.9 dBm
max: 4.5 dBm
Same as CFP-GEN2-100GBASE-LR4

As a leading and professional manufacturer and supplier of fiber optic subsystems and components. Fiberstore offers various 100G CFP modules which are ideal solutions for your 100GbE network. Our 100G transceivers are with high compatibility that can be compatible with many major brands. For more information, please contact us over sales@fs.com.