Everything You Should Know About Bare Metal Switch

Share

In an era where enterprise networks must support an increasing array of connected devices, agility and scalability in networking have become business imperatives. The shift towards open networking has catalyzed the rise of bare metal switches within corporate data networks, reflecting a broader move toward flexibility and customization. As these switches gain momentum in enterprise IT environments, one may wonder, what differentiates bare metal switches from their predecessors, and what advantages do they offer to meet the demands of modern enterprise networks?

What is a Bare Metal Switch?

Bare metal switches are originated from a growing need to separate hardware from software in the networking world. This concept was propelled mainly by the same trend within the space of personal computing, where users have freedom of choice over the operating system they install. Before their advent, proprietary solutions dominated, where a single vendor would provide the networking hardware bundled with their software.

A bare metal switch is a network switch without a pre-installed operating system (OS) or, in some cases, with a minimal OS that serves simply to help users install their system of choice. They are the foundational components of a customizable networking solution. Made by original design manufacturers (ODMs), these switches are called “bare” because they come as blank devices that allow the end-user to implement their specialized networking software. As a result, they offer unprecedented flexibility compared to traditional proprietary network switches.

Bare metal switches usually adhere to open standards, and they leverage common hardware components observed across a multitude of vendors. The hardware typically consists of a high-performance switching silicon chip, an essential assembly of ports, and the standard processing components required to perform networking tasks. However, unlike their proprietary counterparts, these do not lock you into a specific vendor’s ecosystem.

What are the Primary Characteristics of Bare Metal Switches?

The aspects that distinguish bare metal switches from traditional enclosed switches include:

Hardware Without a Locked-down OS: Unlike traditional networking switches from vendors like Cisco or Juniper, which come with a proprietary operating system and a closed set of software features, bare metal switches are sold with no such restrictions.

Compatibility with Multiple NOS Options: Customers can choose to install a network operating system of their choice on a bare metal switch. This could be a commercial NOS, such as Cumulus Linux or Pica8, or an open-source NOS like Open Network Linux (ONL).

Standardized Components: Bare metal switches typically use standardized hardware components, such as merchant silicon from vendors like Broadcom, Intel, or Mellanox, which allows them to achieve cost efficiencies and interoperability with various software platforms.

Increased Flexibility and Customization: By decoupling the hardware from the software, users can customize their network to their specific needs, optimize performance, and scale more easily than with traditional, proprietary switches.

Target Market: These switches are popular in large data centers, cloud computing environments, and with those who embrace the Software-Defined Networking (SDN) approach, which requires more control over the network’s behavior.

Bare metal switches and the ecosystem of NOS options enable organizations to adopt a more flexible, disaggregated approach to network hardware and software procurement, allowing them to tailor their networking stack to their specific requirements.

Benefits of Bare Metal Switches in Practice

Bare metal switches introduce several advantages for enterprise environments, particularly within campus networks and remote office locations at the access edge. It offers an economical solution to manage the surging traffic triggered by an increase of Internet of Things (IoT) devices and the trend of employees bringing personal devices to the network. These devices, along with extensive cloud service usage, generate considerable network loads with activities like streaming video, necessitating a more efficient and cost-effective way to accommodate this burgeoning data flow.

In contrast to the traditional approach where enterprises might face high costs updating edge switches to handle increased traffic, bare metal switches present an affordable alternative. These devices circumvent the substantial markups imposed by well-known vendors, making network expansion or upgrades more financially manageable. As a result, companies can leverage open network switches to develop networks that are not only less expensive but better aligned with current and projected traffic demands.

Furthermore, bare metal switches support the implementation of the more efficient leaf-spine network topology over the traditional three-tier structure, consolidating the access and aggregation layers and often enabling a single-hop connection between devices, which enhances connection efficiency and performance. With vendors like Pica8 employing this architecture, the integration of Multi-Chassis Link Aggregation (MLAG) technology supersedes the older Spanning Tree Protocol (STP), effectively doubling network bandwidth by allowing simultaneous link usage and ensuring rapid network convergence in the event of link failures.

Building High-Performing Enterprise Networks

FS S5870 series of switches is tailored for enterprise networks, primarily equipped with 48 1G RJ45 ports and a variety of uplink ports. This configuration effectively resolves the challenge of accommodating multiple device connections within enterprises. S5870 PoE+ switches offer PoE+ support, reducing installation and deployment expenses while amplifying network deployment flexibility, catering to a diverse range of scenario demands. Furthermore, the PicOS License and PicOS maintenance and support services can further enhance the worry-free user experience for enterprises. Features such as ACL, RADIUS, TACACS+, and DHCP snooping enhance network visibility and security. FS professional technical team assists with installation, configuration, operation, troubleshooting, software updates, and a wide range of other network technology services.

What is MPLS (Multiprotocol Label Switching)?

Share

In the ever-evolving landscape of networking technologies, Multiprotocol Label Switching (MPLS) has In the ever-evolving landscape of networking technologies, Multiprotocol Label Switching (MPLS) has emerged as a crucial and versatile tool for efficiently directing data traffic across networks. MPLS brings a new level of flexibility and performance to network communication. In this article, we will explore the fundamentals of MPLS, its purpose, and its relationship with the innovative technology of Software-Defined Wide Area Networking (SD-WAN).

What is MPLS (Multiprotocol Label Switching)?

Before we delve into the specifics of MPLS, it’s important to understand the journey of data across the internet. Whenever you send an email, engage in a VoIP call, or participate in video conferencing, the information is broken down into packets, commonly known as IP packets, which travel from one router to another until they reach their intended destination. At each router, a decision must be made about how to forward the packet, a process that relies on intricate routing tables. This decision-making is required at every juncture in the packet’s path, potentially leading to inefficiencies that can degrade performance for end-users and affect the overall network within an organization. MPLS offers a solution that can enhance network efficiency and elevate the user experience by streamlining this process.

MPLS Definition

Multiprotocol Label Switching (MPLS) is a protocol-agnostic, packet-forwarding technology designed to improve the speed and efficiency of data traffic flow within a network. Unlike traditional routing protocols that make forwarding decisions based on IP addresses, MPLS utilizes labels to determine the most efficient path for forwarding packets.

At its core, MPLS adds a label to each data packet’s header as it enters the network. This “label” contains information that directs the packet along a predetermined path through the network. Instead of routers analyzing the packet’s destination IP address at each hop, they simply read the label, allowing for faster and more streamlined packet forwarding.

MPLS Network

An MPLS network is considered to operate at OSI layer “2.5”, below the network layer (layer 3) and above the data link layer (layer 2) within the OSI seven-layer framework. The Data Link Layer (Layer 2) handles the transportation of IP packets across local area networks (LANs) or point-to-point wide area networks (WANs). On the other hand, the Network Layer (Layer 3) employs internet-wide addressing and routing through IP protocols. MPLS strategically occupies the space between these two layers, introducing supplementary features to facilitate efficient data transport across the network.

The FS S8550 series switches support advanced features of MPLS, including LDP, MPLS-L2VPN, and MPLS-L3VPN. To enable these advanced MPLS features, the LIC-FIX-MA license is required. These switches are designed to provide high reliability and security, making them suitable for scenarios that require compliance with the MPLS protocol. If you want to know more about MPLS switches, please read fs.com.

What is MPLS Used for?

Traffic Engineering

One of the primary purposes of MPLS is to enhance traffic engineering within a network. By using labels, MPLS enables network operators to establish specific paths for different types of traffic. This granular control over routing paths enhances network performance and ensures optimal utilization of network resources.

Quality of Service (QoS)

MPLS facilitates effective Quality of Service (QoS) implementation. Network operators can prioritize certain types of traffic by assigning different labels, ensuring that critical applications receive the necessary bandwidth and low latency. This makes MPLS particularly valuable for applications sensitive to delays, such as voice and video communication.

Scalability

MPLS enhances network scalability by simplifying the routing process. Traditional routing tables can become complex and unwieldy, impacting performance as the network grows. MPLS simplifies the decision-making process by relying on labels, making it more scalable and efficient, especially in large and complex networks.

Traffic Segmentation and Virtual Private Networks (VPNs)

MPLS supports traffic segmentation, allowing network operators to create Virtual Private Networks (VPNs). By using labels to isolate different types of traffic, MPLS enables the creation of private, secure communication channels within a larger network. This is particularly beneficial for organizations with geographically dispersed offices or remote users.

MPLS Network

MMPLS Integrates With SD-WAN

Integration with SD-WAN

MPLS plays a significant role in the realm of Software-Defined Wide Area Networking (SD-WAN). SD-WAN leverages the flexibility and efficiency of MPLS to enhance the management and optimization of wide-area networks. MPLS provides a reliable underlay for SD-WAN, offering secure and predictable connectivity between various network locations.

Hybrid Deployments

Many organizations adopt a hybrid approach, combining MPLS with SD-WAN to create a robust and adaptable networking infrastructure. MPLS provides the reliability and security required for mission-critical applications, while SD-WAN introduces dynamic, software-driven management for optimizing traffic across multiple paths, including MPLS, broadband internet, and other connections.

Cost Efficiency

The combination of MPLS and SD-WAN can result in cost savings for organizations. SD-WAN’s ability to intelligently route traffic based on real-time conditions allows for the dynamic utilization of cost-effective connections, such as broadband internet, while still relying on MPLS for critical and sensitive data.

Want to learn more about the pros and cons of SD-WAN and MPLS, please check SD-WAN vs MPLS: Pros and Con

Conclusion

In conclusion, Multiprotocol Label Switching (MPLS) stands as a powerful networking technology designed to enhance the efficiency, scalability, and performance of data traffic within networks. Its ability to simplify routing decisions through the use of labels brings numerous advantages, including improved traffic engineering, Quality of Service implementation, and support for secure Virtual Private Networks.

Moreover, MPLS seamlessly integrates with Software-Defined Wide Area Networking (SD-WAN), forming a dynamic and adaptable networking solution. The combination of MPLS and SD-WAN allows organizations to optimize their network infrastructure, achieving a balance between reliability, security, and cost efficiency. As the networking landscape continues to evolve, MPLS remains a foundational technology, contributing to the seamless and efficient flow of data in diverse and complex network environments.

What Is Access Layer and How to Choose the Right Access Switch?

Share

In the intricate world of networking, the access layer stands as the gateway to a seamless connection between end-user devices and the broader network infrastructure. At the core of this connectivity lies the access layer switch, a pivotal component that warrants careful consideration for building a robust and efficient network. This article explores the essence of the access layer, delves into how it operates, distinguishes access switches from other types, and provides insights into selecting the right access layer switch.

What is the Access Layer?

The Access Layer, also known as the Edge Layer, in network infrastructure is the first layer within a network topology that connects end devices, such as computers, printers, and phones, to the network. It is where users gain access to the network. This layer typically includes switches and access points that provide connectivity to devices. The Access Layer switches are responsible for enforcing policies such as port security, VLAN segmentation, and Quality of Service (QoS) to ensure efficient and secure data transmission.

For instance, our S5300-12S 12-Port Ethernet layer 3 switch would be an excellent choice for the Access Layer, offering robust security features, high-speed connectivity, and advanced QoS policies to meet varying network requirements.

Access Layer Switch

What is Access Layer Used for?

The primary role of the access layer is to facilitate communication between end devices and the rest of the network. This layer serves as a gateway for devices to access resources within the network and beyond. Key functions of the access layer include:

Device Connectivity

The access layer ensures that end-user devices can connect to the network seamlessly. It provides the necessary ports and interfaces for devices like computers, phones, and printers to establish a connection.

VLAN Segmentation

Virtual LANs (VLANs) are often implemented at the access layer to segment network traffic. This segmentation enhances security, manageability, and performance by isolating traffic into logical groups.

Security Enforcement

Security policies are enforced at the access layer to control access to the network. This can include features like port security, which limits the number of devices that can connect to a specific port.

Quality of Service (QoS)

The access layer may implement QoS policies to prioritize certain types of traffic, ensuring that critical applications receive the necessary bandwidth and minimizing latency for time-sensitive applications.

What is the Role of An Access Layer Switch?

Access switches serve as the tangible interface at the access layer, tasked with linking end devices to the distribution layer switches while guaranteeing the delivery of data packets to those end devices. In addition to maintaining a consistent connection for end users and the higher-level distribution and core layers, an access switch must fulfill the demands of the access layer. This includes streamlining network management, offering security features, and catering to various specific needs that differ based on the network context.

Factors to Consider When Selecting Access Layer Switches

Choosing the right access layer switches is crucial for creating an efficient and reliable network. Consider the following factors when selecting access layer switches for your enterprise:

  • Port Density

Evaluate the number of ports required to accommodate the connected devices in your network. Ensure that the selected switch provides sufficient port density to meet current needs and future expansion.

  • Speed and Bandwidth

Consider the speed and bandwidth requirements of your network. Gigabit Ethernet is a common standard for access layer switches, but higher-speed options like 10 Gigabit Ethernet may be necessary for bandwidth-intensive applications.

  • Power over Ethernet (PoE) Support

If your network includes devices that require power, such as IP phones and security cameras, opt for switches with Power over Ethernet (PoE) support. PoE eliminates the need for separate power sources for these devices.

  • Manageability and Scalability

Choose switches that offer easy management interfaces and scalability features. This ensures that the network can be efficiently monitored, configured, and expanded as the organization grows.

  • Security Features

Look for switches with robust security features. Features like MAC address filtering, port security, and network access control (NAC) enhance the overall security posture of the access layer.

  • Reliability and Redundancy

Select switches with high reliability and redundancy features. Redundant power supplies and link aggregation can contribute to a more resilient access layer, reducing the risk of downtime.

  • Cost-Effectiveness

Consider the overall cost of the switch, including initial purchase cost, maintenance, and operational expenses. Balance the features and capabilities of the switch with the budget constraints of your organization.

  • Compatibility with Network Infrastructure

Ensure that the chosen access layer switches are compatible with the existing network infrastructure, including core and distribution layer devices. Compatibility ensures seamless integration and optimal performance.

Related Article:How to Choose the Right Access Layer Switch?

Conclusion

In conclusion, the access layer is a critical component of network architecture, facilitating connectivity for end-user devices. Choosing the right access layer switches is essential for building a reliable and efficient network. Consider factors such as port density, speed, PoE support, manageability, security features, reliability, and compatibility when selecting access layer switches for your enterprise. By carefully evaluating these factors, you can build a robust access layer that supports the connectivity needs of your organization while allowing for future growth and technological advancements.

Bare Metal Switch vs White Box Switch vs Brite Box Switch: What Is the Difference?

Share

In the current age of increasingly dynamic IT environments, the traditional networking equipment model is being challenged. Organizations are seeking agility, customization, and scalability in their network infrastructures to deal with escalating data traffic demands and the shift towards cloud computing. This has paved the way for the emergence of bare metal switches, white box switches, and brite box switches. Let’s explore what these different types of networking switches mean, how they compare, and which might be the best choice for your business needs.

What Is Bare Metal Switch?

A bare metal switch is a hardware device devoid of any pre-installed networking operating system (NOS). With standard components and open interfaces, these switches offer a base platform that can be transformed with software to suit the specific needs of any network. The idea behind a bare metal switch is to separate networking hardware from software, thus providing the ultimate flexibility for users to curate their network behavior according to their specific requirements.

Bare metal switches are often seen in data center environments where organizations want more control over their network, and are capable of deploying, managing, and supporting their chosen software.

What Is White Box Switch?

A white box switch takes the concept of the bare metal switch a step further. These switches come as standardized network devices typically with pre-installed, albeit minimalistic, NOS that are usually based on open standards and can be replaced or customized as needed. Users can add on or strip back functionalities to match their specific requirements, offering the ability to craft highly tailored networking environments.

The term “white box” suggests these devices come from Original Design Manufacturers (ODMs) that produce the underlying hardware for numerous brands. These are then sold either directly through the ODM or via third-party vendors without any brand-specific features or markup.

Bare Metal Switch vs White Box Switch

While Bare Metal and White Box Switches are frequently used interchangeably, distinctions lie in their offerings and use cases. Bare Metal Switches prioritize hardware, leaving software choices entirely in the hands of the end-user. In contrast, White Box Switches lean towards a complete solution—hardware potentially coupled with basic software, providing a foundation which can be extensively customized or used out-of-the-box with the provided NOS. The choice between the two hinges on the level of control an IT department wants over its networking software coupled with the necessity of precise hardware specifications.

What is Brite Box Switch?

Brite Box Switches serve as a bridge between the traditional and the modern, between proprietary and open networking. In essence, Brite box switches are white box solutions delivered by established networking brands. They provide the lower-cost hardware of a white box solution but with the added benefit of the brand’s software, support, and ecosystem. For businesses that are hesitant about delving into a purely open environment due to perceived risks or support concerns, brite boxes present a middling ground.

Brite box solutions tend to be best suited to enterprises that prefer the backing of big vendor support without giving up the cost and flexibility advantages offered by white and bare metal alternatives.

Comparison Between Bare Metal Switch, White Box Switch and Brite Box Switch

Here is a comparative look at the characteristics of Bare Metal Switches, White Box Switches, and Brite Box Switches:

FeatureBare Metal SwitchWhite Box SwitchBrite Box Switch
DefinitionHardware sold without a pre-installed OSStandardized hardware with optional NOSBrand-labeled white box hardware with vendor support
Operating SystemNo OS; user installs their choiceOptional pre-installed open NOSPre-installed open NOS, often with vendor branding
Hardware ConfigurationStandard open hardware from ODMs; users can customize configurations.Standard open hardware from ODMs with added flexibility of configurations.Standard open hardware, sometimes with added specifications from the vendor.
CostLower due to no licensing for OSGenerally lowest cost optionHigher than white box, but less than proprietary
Flexibility & ControlHighHighModerate
IntegrationRequires skilled IT to integrateIdeal for highly customized environmentsEasier; typically integrates with vendor ecosystem
Reliability/SupportRelies on third-party NOS supportSelf-supportVendor-provided support services
Bare Metal Switch vs White Box Switch vs Brite Box Switch

When choosing the right networking switch, it’s vital to consider the specific needs, technical expertise, and strategic goals of your organization. Bare metal switches cater to those who want full control and have the capacity to handle their own support and software management. White box switches offer a balance between cost-effectiveness and ease of deployment. In contrast, brite box switches serve businesses looking for trusted vendor support with a tinge of openness found in white box solutions.

Leading Provider of Open Networking Infrastructure Solutions

FS (www.fs.com) is a global provider of ICT network products and solutions, serving data centers, enterprises, and telecom networks around the world. At present, FS offers open network switches compatible with PicOS®, ranging from 1G to 400G, customers can procure the PicOS®, PicOS-V, and the AmpCon™, along with comprehensive service support, through FS. Their commitment to customer-driven solutions aligns well with the ethos of open networking, making them a trusted partner for enterprises stepping into the future of open infrastructure.

What is Layer 3 Switch and How Does it Works?

Share

What is the OSI Model?

Before delving into the specifics of a Layer 3 switch, it’s essential to grasp the OSI model. The OSI (Open Systems Interconnection) model serves as a conceptual framework that standardizes the functions of a telecommunication or computing system, providing a systematic approach to understanding and designing network architecture. Comprising seven layers, the OSI model delineates specific tasks and responsibilities for each layer, from the physical layer responsible for hardware transmission to the application layer handling user interfaces. The layers are, from bottom to top:

  • Layer 1 (Physical)
  • Layer 2 (Data-Link)
  • Layer 3 (Network)
  • Layer 4 (Transport)
  • Layer 5 (Session)
  • Layer 6 (Presentation)
  • Layer 7 (Application)
Figure 1: OSI Model

What is a Layer 3 Switch?

A Layer 3 switch operates at the third layer of the OSI model, known as the network layer. This layer is responsible for logical addressing, routing, and forwarding of data between different subnets. Unlike a traditional Layer 2 switch that operates at the data link layer and uses MAC addresses for forwarding decisions, a Layer 3 switch can make routing decisions based on IP addresses.

In essence, a Layer 3 switch combines the features of a traditional switch and a router. It possesses the high-speed, hardware-based switching capabilities of Layer 2 switches, while also having the intelligence to route traffic based on IP addresses.

How does a Layer 3 Switch Work?

The operation of a Layer 3 switch involves both Layer 2 switching and Layer 3 routing functionalities. When a packet enters the Layer 3 switch, it examines the destination IP address and makes a routing decision. If the destination is within the same subnet, the switch performs Layer 2 switching, forwarding the packet based on the MAC address. If the destination is in a different subnet, the Layer 3 switch routes the packet to the appropriate subnet.

This dynamic capability allows Layer 3 switches to efficiently handle inter-VLAN routing, making them valuable in networks with multiple subnets. Additionally, Layer 3 switches often support routing protocols such as OSPF or EIGRP, enabling dynamic routing updates and adaptability to changes in the network topology.

What are the Benefits of a Layer 3 Switch?

The adoption of Layer 3 switches brings several advantages to a network:

  • Improved Performance: By offloading inter-VLAN routing from routers to Layer 3 switches, network performance is enhanced. The switch’s hardware-based routing is generally faster than software-based routing on traditional routers.
  • Reduced Network Traffic: Layer 3 switches can segment a network into multiple subnets, reducing broadcast traffic and enhancing overall network efficiency.
  • Scalability: As businesses grow, the need for scalability becomes crucial. Layer 3 switches facilitate the creation of additional subnets, supporting the expansion of the network infrastructure.
  • Cost Savings: Consolidating routing and switching functions into a single device can lead to cost savings in terms of hardware and maintenance.

Are there Drawbacks?

While Layer 3 switches offer numerous advantages, it’s important to consider potential drawbacks:

  • Cost: Layer 3 switches can be more expensive than their Layer 2 counterparts, which may impact budget considerations.
  • Complexity: Implementing and managing Layer 3 switches requires a certain level of expertise. The increased functionality can lead to a steeper learning curve for network administrators.
  • Limited WAN Capabilities: Layer 3 switches are primarily designed for local area network (LAN) environments and may not offer the same advanced wide area network (WAN) features as dedicated routers.

Do You Need a Layer 3 Switch?

Determining whether your network needs a Layer 3 switch depends on various factors, including the size and complexity of your infrastructure, performance requirements, and budget constraints. Small to medium-sized businesses with expanding network needs may find value in deploying Layer 3 switches to optimize their operations. Larger enterprises with intricate network architectures may require a combination of Layer 2 and Layer 3 devices for a well-rounded solution.

Why Your Network Might Need One?

As organizations grow and diversify, the demand for efficient data routing and inter-VLAN communication becomes paramount. A Layer 3 switch addresses these challenges by integrating the capabilities of traditional Layer 2 switches and routers, offering a solution that not only optimizes network performance through hardware-based routing but also streamlines inter-VLAN routing within the switch itself. This not only reduces the reliance on external routers but also enhances the speed and responsiveness of the network.

Additionally, the ability to segment the network into multiple subnets provides a scalable and flexible solution for accommodating growth, ensuring that the network infrastructure remains adaptable to evolving business requirements.

Ultimately, the deployment of a Layer 3 switch becomes essential for organizations seeking to navigate the complexities of a growing network landscape while simultaneously improving performance and reducing operational costs.

Summary

In conclusion, a Layer 3 switch serves as a versatile solution for modern network infrastructures, offering a balance between the high-speed switching capabilities of Layer 2 switches and the routing intelligence of traditional routers. Understanding its role in the OSI model, how it operates, and the benefits it brings can empower network administrators to make informed decisions about their network architecture. While there are potential drawbacks, the advantages of improved performance, reduced network traffic, scalability, and cost savings make Layer 3 switches a valuable asset in optimizing network efficiency and functionality.

A Comprehensive Guide to HPC Cluster

Share

Very often, it’s common for individuals to perceive a High-Performance Computing (HPC) setup as if it were a singular, extraordinary device. There are instances when users might even believe that the terminal they are accessing represents the full extent of the computing network. So, what exactly constitutes an HPC system?

What is an HPC(High-Performance Computing) Cluster?

An High-Performance Computing (HPC) cluster is a type of computer cluster specifically designed and assembled for delivering high levels of performance that can handle compute-intensive tasks. An HPC cluster is typically used for running advanced simulations, scientific computations, and big data analytics where single computers are incapable of processing such complex data or at speeds that meet the user requirements. Here are the essential characteristics of an HPC cluster:

Components of an HPC Cluster

  • Compute Nodes: These are individual servers that perform the cluster’s processing tasks. Each compute node contains one or more processors (CPUs), which might be multi-core; memory (RAM); storage space; and network connectivity.
  • Head Node: Often, there’s a front-end node that serves as the point of interaction for users, handling job scheduling, management, and administration tasks.
  • Network Fabric: High-speed interconnects like InfiniBand or 10 Gigabit Ethernet are used to enable fast communication between nodes within the cluster.
  • Storage Systems: HPC clusters generally have shared storage systems that provide high-speed and often redundant access to large amounts of data. The storage can be directly attached (DAS), network-attached (NAS), or part of a storage area network (SAN).
  • Job Scheduler: Software such as Slurm or PBS Pro to manage the workload, allocating compute resources to various jobs, optimizing the use of the cluster, and queuing systems for job processing.
  • Software Stack: This may include cluster management software, compilers, libraries, and applications optimized for parallel processing.

Functionality

HPC clusters are designed for parallel computing. They use a distributed processing architecture in which a single task is divided into many sub-tasks that are solved simultaneously (in parallel) by different processors. The results of these sub-tasks are then combined to form the final output.

Figure 1: High-Performance Computing Cluster

HPC Cluster Characteristics

An HPC data center differs from a standard data center in several foundational aspects that allow it to meet the demands of HPC applications:

  • High Throughput Networking

HPC applications often involve redistributing vast amounts of data across many nodes in a cluster. To accomplish this effectively, HPC data centers use high-speed interconnects, such as InfiniBand or high-gigabit Ethernet, with low latency and high bandwidth to ensure rapid communication between servers.

  • Advanced Cooling Systems

The high-density computing clusters in HPC environments generate a significant amount of heat. To keep the hardware at optimal temperatures for reliable operation, advanced cooling techniques — like liquid cooling or immersion cooling — are often employed.

  • Enhanced Power Infrastructure

The energy demands of an HPC data center are immense. To ensure uninterrupted power supply and operation, these data centers are equipped with robust electrical systems, including backup generators and redundant power distribution units.

  • Scalable Storage Systems

HPC requires fast and scalable storage solutions to provide quick access to vast quantities of data. This means employing high-performance file systems and storage hardware, such as solid-state drives (SSDs), complemented by hierarchical storage management for efficiency.

  • Optimized Architectures

System architecture in HPC data centers is optimized for parallel processing, with many-core processors or accelerators such as GPUs (graphics processing units) and FPGAs (field-programmable gate arrays), which are designed to handle specific workloads effectively.

Applications of HPC Cluster

HPC clusters are used in various fields that require massive computational capabilities, such as:

  • Weather Forecasting
  • Climate Research
  • Molecular Modeling
  • Physical Simulations (such as those for nuclear and astrophysical phenomena)
  • Cryptanalysis
  • Complex Data Analysis
  • Machine Learning and AI Training

Clusters provide a cost-effective way to gain high-performance computing capabilities, as they leverage the collective power of many individual computers, which can be cheaper and more scalable than acquiring a single supercomputer. They are used by universities, research institutions, and businesses that require high-end computing resources.

Summary of HPC Clusters

In conclusion, this comprehensive guide has delved into the intricacies of High-Performance Computing (HPC) clusters, shedding light on their fundamental characteristics and components. HPC clusters, designed for parallel processing and distributed computing, stand as formidable infrastructures capable of tackling complex computational tasks with unprecedented speed and efficiency.

At the core of an HPC cluster are its nodes, interconnected through high-speed networks to facilitate seamless communication. The emphasis on parallel processing and scalability allows HPC clusters to adapt dynamically to evolving computational demands, making them versatile tools for a wide array of applications.

Key components such as specialized hardware, high-performance storage, and efficient cluster management software contribute to the robustness of HPC clusters. The careful consideration of cooling infrastructure and power efficiency highlights the challenges associated with harnessing the immense computational power these clusters provide.

From scientific simulations and numerical modeling to data analytics and machine learning, HPC clusters play a pivotal role in advancing research and decision-making across diverse domains. Their ability to process vast datasets and execute parallelized computations positions them as indispensable tools in the quest for innovation and discovery.

What Is a Multilayer Switch and How to Use It?

Share

With the increasing diversity of network applications and the implementation of some converted networks, the multilayer switch is thriving in data centers and networks. It is regarded as a technology to enhance the network routing performance on LANs. This article will give a clear explanation for multilayer switch and how to use it.

What Is a Multilayer Switch?

The multilayer switch (MLS) has 10gbe switch and Gigabit Ethernet switch. It is a network device which enables operation at multiple layers of the OSI model. By the way, the OSI model is a reference model for describing network communications. It has seven layers, including the physical layer (layer 1), data link layer (layer 2), network layer (layer 3) and so on. The multilayer switch performs functions up to almost application Layer (layer 7). For instance, it can do the context based access control, which is a feature of layer 7. Unlike the traditional switches, multilayer switches also can bear the functions of routers at incredibly fast speeds. In addition, the Layer 3 switch is one type of multilayer switches and is very commonly used.

Figure 1: Seven layers in OSI model

Multilayer Switch vs Layer 2 Switch

The Layer 2 switch forwards data packets based on the Layer 2 information like MAC addresses. As a traditional switch, it can inspect frames. While multilayer switches not only can do all the job that Layer 2 switches do, it has routing function as well, including static routing and dynamic routing. So multilayer switches can inspect deeper into the protocol description unit.

For more information, you can read Layer 2 vs Layer 3 Switch: Which One Do You Need?

Multilayer Switch vs Router

Generally, multilayer switches and routers have three key differences. Firstly, routers typically use software to route. While multilayer switches route packets on ASCI (Application Specific Integrated Circuit) hardware. Another difference is that multilayer switches route packets faster than routers. In addition, based on IP addresses, routers can support numerous different WAN technologies. However, multilayer switches lack some QoS (Quality of Service) features. It is commonly used in LAN environment.

For more information about it, please refer to Layer 3 Switch Vs Router: What Is Your Best Bet?

Why Use a Multilayer Switch?

As mentioned above, the multilayer switch plays an important role in network setups. The following highlights some of the advantages.

  • Easy-to-use – Multilayer switches are configured automatically and its Layer 3 flow cache is set up autonomously. And there is no need for you to learn new IP switching technologies for its “plug-and-play” design.
  • Faster connectivity – With multilayer switches, you gain the benefits of both switching and routing on the same platform. Therefore, it can meet the higher-performance need for the connectivity of intranets and multimedia applications.
Figure 2: Multilayer switches

How to Use a Multilayer Switch?

Generally, there are three main steps for you to configure a multilayer switch.

Preparation

  • Determine the number of VLANs that will be used, and the IP address range (subnet) you’re going to use for each VLAN.
  • Within each subnet, identify the addresses that will be used for the default gateway and DNS server.
  • Decide if you’re going to use DHCP or static addressing in each VLAN.

Configuration

You can start configuring the multilayer switch after making preparations.

  • Enable routing on the switch with the IP routing command. (Note: some multilayer switches may support the protocols like RIP and OSPF.)
  • Log into multilayer switch management interface.
  • Create the VLANs on the multilayer switch and assign ports to each VLAN.

Verification

After completing the second step, you still need to offer a snapshot of the routing table entries and list a summary of an interface’s IP information and status. Then, the multilayer switch configuration is finished.

Conclusion

The multilayer switch provides high functions in the networking. It is suitable for VLAN segmentation and better network performance. When buying multilayer switches, you’d better take multilayer switch price and using environment into consideration. FS.COM offers a full set of network switch solutions and products, including SFP switch, copper switch, etc. If you have any needs, welcome to visit FS.COM.

What is Core Layer and How to Choose the Right Core Switch?

Share

What is Core Layer?

The Core Layer in networking serves as the backbone of a hierarchical network design, forming a critical component within the three-layer model alongside the Access and Distribution layers. Situated at the center of network architecture, the Core Layer is designed for high-speed, high-capacity packet switching, ensuring swift and efficient transport of data across the entire network.

Unlike the Distribution Layer, the Core Layer typically focuses on rapid data transfer without applying extensive processing or policy-based decision-making. Its primary objective is to facilitate seamless and fast communication between different parts of the network.

Duty of Core Switches

In the enterprise hierarchical network design, the core layer switch is the topside one, which is relied on by the other access and distribution layers. It aggregates all the traffic flows from distribution layer devices and access layer devices, and sometimes core switches need to deal with external traffic from other egresses devices. So it is important for core switches to send large amounts of packets as much as possible. The core layer always consists of high-speed switches and routers optimized for performance and availability.

Figure 1: Core Switches in the three-tier architecture

Located at the core layer of enterprise networking, a core layer switch functions as a backbone switch for LAN access and centralizes multiple aggregation devices to the core. In these three layers, core switches require most highly in the switch performance. They are usually the most powerful, in terms of forwarding large amounts of data quickly. For most of the cases, core switches manage high-speed connections, such as 10G Ethernet, 40G Ethernet or 100G Ethernet. To ensure high-speed traffic transfer, core switches should not perform any packet manipulation such as Inter-Vlan routing, Access Lists, etc., which are performed by distribution devices.

Note: In small networks, it is often the case to implement a collapsed core layer, combining the core layer and the distribution layer into one as well as the switches. More information about the collapsed core is available in How to Choose the Right Distribution Switch?

Factors to Consider When Choosing Core Switches for Enterprises

Simply put, core layer switches are generally layer 3 switches with high performance, availability, reliability, and scalability. Except for considering the basic specifications like port speed and port types, the following factors should be considered when choosing core switches for an enterprise network design.

Performance

The packet forwarding rate and switching capacity matter a lot to the core switch in enterprise networking. Compared with the access layer switches and distribution switches, core switches must provide the highest forwarding rate and switching capacity as much as possible. The concrete forwarding rate largely depends on the number of devices in the network, the core switches can be selected from the bottom to the top based on the distribution layer devices.

For instance, network designers can determine the necessary forwarding rate of core switches by checking and examining the various traffic flow from the access and distribution layers, then identify one or more appropriate core switches for the network.

Redundancy

Core switches pay more attention to redundancy compared with other switches. Since the core layer switches carry much higher workloads than the access switches and distribution switches, they are generally hotter than the switches in the other two layers, the cooling system should be taken into consideration. As often the case, core layer switches are generally equipped with redundant cooling systems to help the switches cooling down while they are running.

The redundant power supply is another feature that should be considered. Imagine that the switches lose power when the networking is running, the whole network would shut down when you are going to perform a hardware replacement. With redundant power supplies, when one supply fails, the other one will instantly start running, ensuring the whole network unaffected by the maintenance.

FS provides switches with hot-swappable fans and power supply modules for better redundancy.

Reliability

Typically core switches are layer 3 switches, performing both switching and routing functions. Connectivity between a distribution and core switches is accomplished using layer 3 links. Core switches should perform advanced DDoS protection using layer 3 protocols to increase security and reliability. Link aggregation is needed in core switches, ensuring distribution switches delivering network traffic to the core layer as efficiently as possible.

Moreover, fault tolerance is an issue to consider. If a failure occurs in the core layer switches, every user would be affected. Configurations such as access lists and packet filtering should be avoided in case that network traffic would slow down. Fault-tolerant protocols such as VRRP and HSRP is also available to group the devices into a virtual one and ensure the communication reliability in case one physical switch breaks down. What’s more, when there are more than one core switches in some enterprise networks, the core switches need to support functions such as MLAG to ensure the operation of the whole link if a core switch fails.

QoS Capability

QoS is an essential service that can be desired for certain types of network traffic. In today’s enterprises, with the growing amount of data traffic, more and more voice and video data are required. What if network congestion occurs in the enterprise core? The QoS service will make sense.

With the QoS capability, core switches are able to provide different bandwidth to different applications according to their various characteristics. Compared with the traffic that is not so sensitive about time such as E-mail, critical traffic sensitive to time should receive higher QoS guarantees so that more important traffic can pass first, with the high forwarding of data and low package loss guaranteed.

As you can see from the contents above, there are many factors that determine what enterprise core switches are most suitable for your network environment. In addition, you may need a few conversations with the switch vendors and know what specific features and services they can provide so as to make a wise choice.


Related Articles:

How to Choose the Right Access Layer Switch?

How to Choose the Right Core Switch?

Understanding VXLAN: A Guide to Virtual Extensible LAN Technology

Share

In modern network architectures, especially within data centers, the need for scalable, secure, and efficient overlay networks has become paramount. VXLAN, or Virtual Extensible LAN, is a network virtualization technology designed to address this necessity by enabling the creation of large-scale overlay networks on top of existing Layer 3 infrastructure. This article delves into VXLAN and its role in building robust data center networks, with a highlighted recommendation for FS’ VXLAN solution.

What Is VXLAN?

Virtual Extensible LAN (VXLAN) is a network overlay technology that allows for the deployment of a virtual network on top of a physical network infrastructure. It enhances traditional VLANs by significantly increasing the number of available network segments. VXLAN encapsulates Ethernet frames within a User Datagram Protocol (UDP) packet for transport across the network, permitting Layer 2 links to stretch across Layer 3 boundaries. Each encapsulated packet includes a VXLAN header with a 24-bit VXLAN Network Identifier (VNI), which increases the scalability of network segments up to 16 million, a substantial leap from the 4096 VLANs limit.

VXLAN operates by creating a virtual network for virtual machines (VMs) across different networks, making VMs appear as if they are on the same LAN regardless of their underlying network topology. This process is often referred to as ‘tunneling’, and it is facilitated by VXLAN Tunnel Endpoints (VTEPs) that encapsulate and de-encapsulate the traffic. Furthermore, VXLAN is often used with virtualization technologies and in data centers, where it provides the means to span virtual networks across different physical networks and locations.

VXLAN

What Problem Does VXLAN Solve?

VXLAN primarily addresses several limitations associated with traditional VLANs (Virtual Local Area Networks) in modern networking environments, especially in large-scale data centers and cloud computing. Here’s how VXLAN tackles these constraints:

Network Segmentation and Scalability

Data centers typically run an extensive number of workloads, requiring clear network segmentation for management and security purposes. VXLAN ensures that an ample number of isolated segments can be configured, making network design and scaling more efficient.

Multi-Tenancy

In cloud environments, resources are shared across multiple tenants. VXLAN provides a way to keep each tenant’s data isolated by assigning unique VNIs to each tenant’s network.

VM Mobility

Virtualization in data centers demands that VMs can migrate seamlessly from one server to another. With VXLAN, the migration process is transparent as VMs maintain their network attributes regardless of their physical location in the data center.

What Problem Does VXLAN Solve
Overcoming VLAN Restrictions
The classical Ethernet VLANs are limited in number, which presents challenges in large-scale environments. VXLAN overcomes this by offering a much larger address space for network segmentation.


” Also Check – Understanding Virtual LAN (VLAN) Technology

How VXLAN Can Be Utilized to Build Data Center Networks

When building a data center network infrastructure, VXLAN comes as a suitable overlay technology that seamlessly integrates with existing Layer 3 architectures. By doing so, it provides several benefits:

Coexistence with Existing Infrastructure

VXLAN can overlay an existing network infrastructure, meaning it can be incrementally deployed without the need for major network reconfigurations or hardware upgrades.

Simplified Network Management

VXLAN simplifies network management by decoupling the overlay network (where VMs reside) from the physical underlay network, thus allowing for easier management and provisioning of network resources.

Enhanced Security

Segmentation of traffic through VNIs can enhance security by logically separating sensitive data and reducing the attack surface within the network.

Flexibility in Network Design

With VXLAN, architects gain flexibility in network design allowing server placement anywhere in the data center without being constrained by physical network configurations.

Improved Network Performance

VXLAN’s encapsulation process can benefit from hardware acceleration on platforms that support it, leading to high-performance networking suitable for demanding data center applications.

Integration with SDN and Network Virtualization

VXLAN is a key component in many SDN and network virtualization platforms. It is commonly integrated with virtualization management systems and SDN controllers, which manage VXLAN overlays, offering dynamic, programmable networking capability.

By using VXLAN, organizations can create an agile, scalable, and secure network infrastructure that is capable of meeting the ever-evolving demands of modern data centers.

FS Cloud Data Center VXLAN Network Solution

FS offers a comprehensive VXLAN solution, tailor-made for data center deployment.

Advanced Capabilities

Their solution is designed with advanced VXLAN features, including EVPN (Ethernet VPN) for better traffic management and optimal forwarding within the data center.

Scalability and Flexibility

FS has ensured that their VXLAN implementation is scalable, supporting large deployments with ease. Their technology is designed to be flexible to cater to various deployment scenarios.

Integration with FS’s Portfolio

The VXLAN solution integrates seamlessly with FS’s broader portfolio, (such as the N5860-48SC and N8560-48BC, also have strong performance on top of VXLAN support), providing a consistent operational experience across the board.

End-to-End Security

As security is paramount in the data center, FS’s solution emphasizes robust security features across the network fabric, complementing VXLAN’s inherent security advantages.

In conclusion, FS’ Cloud Data Center VXLAN Network Solution stands out by offering a scalable, secure, and management-friendly approach to network virtualization, which is crucial for today’s complex data center environments.

Hyperconverged Infrastructure: Maximizing IT Efficiency

Share

In the ever-evolving world of IT infrastructure, the adoption of hyperconverged infrastructure (HCI) has emerged as a transformative solution for businesses seeking efficiency, scalability, and simplified management. This article delves into the realm of HCI, exploring its definition, advantages, its impact on data centers, and recommendations for the best infrastructure switch for small and medium-sized businesses (SMBs).

What Is Hyperconverged Infrastructure?

Hyperconverged infrastructure (HCI) is a type of software-defined infrastructure that tightly integrates compute, storage, networking, and virtualization resources into a unified platform. Unlike traditional data center architectures with separate silos for each component, HCI converges these elements into a single, software-defined infrastructure. HCI’s operation revolves around the integration of components, software-defined management, virtualization, scalability, and efficient resource utilization to create a more streamlined, agile, and easier-to-manage infrastructure compared to traditional heterogeneous architectures.

Hyperconverged Infrastructure

Benefits of Hyperconverged Infrastructure

Hyperconverged infrastructure (HCI) offers several benefits that make it an attractive option for modern IT environments:

Simplified Management: HCI consolidates various components (compute, storage, networking) into a single, unified platform, making it easier to manage through a single interface. This simplifies administrative tasks, reduces complexity, and saves time in deploying, managing, and scaling infrastructure.

Scalability: It enables seamless scalability by allowing organizations to add nodes or resources independently, providing flexibility in meeting changing demands without disrupting operations.

Cost-Efficiency: HCI often reduces overall costs compared to traditional infrastructure by consolidating hardware, decreasing the need for specialized skills, and minimizing the hardware footprint. It also optimizes resource utilization, reducing wasted capacity.

Increased Agility: The agility provided by HCI allows for faster deployment of resources and applications. This agility is crucial in modern IT environments where rapid adaptation to changing business needs is essential.

Better Performance: By utilizing modern software-defined technologies and optimizing resource utilization, HCI can often deliver better performance compared to traditional setups.

Resilience and High Availability: Many HCI solutions include built-in redundancy and data protection features, ensuring high availability and resilience against hardware failures or disruptions.

Simplified Disaster Recovery: HCI simplifies disaster recovery planning and implementation through features like data replication, snapshots, and backup capabilities, making it easier to recover from unexpected events.

Support for Virtualized Environments: HCI is well-suited for virtualized environments, providing a robust platform for running virtual machines (VMs) and containers, which are essential for modern IT workloads.

Best Hyperconverged Infrastructure Switch for SMBs

The complexity of traditional data center infrastructure, both hardware and software, poses challenges for SMBs to manage independently, resulting in additional expenses for professional services for setup and deployment. However, the emergence of hyperconverged infrastructure (HCI) has altered this landscape significantly. HCI proves highly beneficial and exceedingly suitable for the majority of SMBs. To cater for the unique demands for hyper-converged appliance, FS.com develops the S5800-8TF12S 10gb switch which is particularly aimed at solving the problems of access to the hyper-converged appliance of small and medium-sized business. With the abundant benefits below, it is a preferred key solution for the connectivity between hyper-converged appliance and the core switch.

Data Center Grade Hardware Design

FS S5800-8TF12S hyper-converged infrastructure switch provides high availability port with 8-port 1GbE RJ45 combo, 8-port 1GbE SFP combo and 12-port 10GbE uplink in a compact 1RU form factor. With the capability of static link aggregation and integrated high performance smart buffer memory, it is a cost-effective Ethernet access platform to hyper-converged appliance.

FS Switch

Reduced Power Consumption

With two redundant power supply units and four smart built-in cooling fans, FS S5800-8TF12S hyper-converged infrastructure switch provides necessary redundancy for the switching system, which ensures optimal and secure performance. The redundant power supplies can maximize the availability of the switching device. The heat sensors on the fan control PCBA (Printed Circuit Board Assembly) monitor and detect the ambient airs. It converts fans speeds accordingly to adapt to the different temperatures, thus reducing power consumption in proper operating temperatures.

Multiple Smart Management

Instead of being managed by Web interface, the FS S5800-8TF12S hyper-converged infrastructure switch supports multiple smart management with two RJ45 management and console ports. SNMP (Simple Network Management Protocol) is also supported by this switch. Thus when managing several switches in a network, it is possible to make the changes automatically to all switches. What about the common switches managed only by Web interface? It will be a nightmare when an SMB needs to configure multiple switches in the network, because there’s no way to script the push out of changes if not parse the web pages.

Traffic Visibility and Trouble-Shooting

In FS S5800-8TF12S HCI switch, the traffic classification is based on the combination of the MAC address, IPv4/IPv6 address, L2 protocol header, TCP/UDP, outgoing interface, and 802.1p field. The traffic shaping is based on interfaces and queues. Thus the traffic flow which are visible and can be monitored in real time. With the DSCP remarking, the video and voice traffic that is sensitive to network delays can be prioritized over other data traffic, so the smooth video streaming and reliable VoIP calls are ensured. Besides, the FS S5800-8TF12S switch comes with comprehensive functions that can help in trouble-shooting. Some basic functions include Ping, Traceroute, Link Layer Discovery Protocol (LLDP), Syslog, Trap, Online Diagnostics and Debug.

Conclusion

Hyperconverged infrastructure stands as a catalyst for IT transformation, offering businesses a potent solution to optimize efficiency, streamline operations, and adapt to ever-changing demands. By embracing HCI and selecting the right infrastructure components, SMBs can harness the power of integrated systems to drive innovation and propel their businesses forward in today’s dynamic digital landscape.