Switch vs Router vs Modem: What Is the Difference?

FacebookTwitterGoogle+LinkedInRedditTumblrShare

Ethernet switch, router and modem look strikingly similar if only judging by their appearance. However, they each play different roles and are deployed for various purposes in a network. So what is the key difference of switch vs router vs modem? How switch vs router vs modem each functions in a network. We would address these issues in this article by explaining switch vs router vs modem from scratch.

switch vs router vs modem

Switch vs Router vs Modem: All Are Major Network Devices

We’ll start from exploring what exactly network switch, router and modem are and the roles of switch vs router vs modem in a network.

modem router switch diagram
What Is a Modem?

A modem is often provided by your ISP (Internet Service Provider) which enables a network access to the internet. In some cases ISPs provide “hybrid” modem/router combination, this device might be power efficient to some extent, it actually limits your network potentials. So suggestion is to request a standalone modem whenever possible to increase the available resources on the network.

What Is a Router?

When connecting more than one device to a modem, a router is generally required. A router acts as the “traffic director” of a network. It takes information provided by the modem and routes it to the devices attached to the modem, then the router creates Network Address Translated ( NAT) internal private IP address to the connected devices so they can be accessed. Devices like computers, game consoles and etc can be connected to a router wirelessly or through network cables. Some advanced features of a router includes built-in firewall to help protect the network from unwanted traffic.

What Is a Switch in Networking?

A switch (such as a 10GbE switch or Gigabit PoE switch) is used to provide additional ports, expanding the capability of the router. A network switch learns the association between the MAC addresses of connected devices and its switched ports. A switch only sends data to where it needs to go, thus reducing the amount of data on the network, thereby increasing the overall performance of the connected devices while improving security. Often connected to a router, a switch will not provide routing capability and should not be connected directly to the modem unless a DHCP server is present elsewhere on the network.

Switch vs Router vs Modem: Similarities and Differences

As standard components in Ethernet networks, switch vs router vs modem bears many similarities, but there are also some key characteristics to set them apart.

Similarities:
  • Switch vs router vs modem are all small plastic/metal box-shaped electronic device
  • They all allow computers to connect to it for the purpose of enabling communication among them via Internet Protocol
  • They all have some physical ports on the front or back of them, which provide the connection points for computers, a connection for electric power, and LED lights to display working status.
Differences:
Router vs Modem

Routers work at network layer 3 of the OSI model, and it deals with IP addresses. A router is specifically used to join networks together and routes traffic between them. When used at home, your router connect the internal local network to your ISP’s network. And it can be connected to your modem (provided by ISP) on one end and to a switch on the other end (local network). Usually, the Internet port on a router will connect to your modem and the rest of the ports are for switches. A modem has a single coaxial port for the cable connection from your ISP and a single Ethernet port to link the Internet port on your router. Modem is used to connect your ISP using phone line (for DSL), cable connection or fiber (ONT).

Router vs Switch

Like we’ve mentioned, a router works at layer 3 of the OSI model, thereby it allows you to connect multiple computers to each other and also allows them to share a single Internet connection. A switch, however, works at layer 2 of the OSI model (there are also some layer 3 switches that have routing capacities), which connects one point to another in a network temporarily by turning it on and off as necessary. Note that a switch only allows you to connect multiple computers into a local network. The following chart illustrates other differences concerning router vs switch.

Router
Switch
Function
Directs data in a network. Passes data between home computers, and between computers and the modem.
Allow connections to multiple devices, manage ports, manage VLAN security settings
Layer
Network Layer (Layer 3 devices)
Data Link Layer. Network switches operate at Layer 2 of the OSI model.
Data Transmission Form
Packet
Frame (L2 Switch) Frame & Packet (L3 switch)
Used
LAN, MAN, WAN
LAN
Transmission Mode
Full duplex
Half/Full duplex
Broadcast Domain
In Router, every port has its own Broadcast domain.
Switch has one broadcast domain [unless VLAN implemented]
Speed
1-100 Mbps (Wireless); 100 Mbps – 1 Gbps (Wired)
10/100 Mbps, 1 Gbps
Address used for data transmission
IP Address
MAC address
Used for
Connecting two or more networks
Connecting two or more nodes in the same network (L2) or different network (L3)
Faster
In a different network environment (MAN/ WAN), a router is faster than an L3 switch.
In a LAN environment, an L3 switch is faster than a router (built-in switching hardware)
Features
Firewall VPN Dynamic hadling of Bandwidth
Priority rt range On/Off setting of port VLAN Port mirroring

Switch vs Router vs Modem: What’s the Connection Sequence?

The simple rule for connecting switch, router and modem is like this: modem-router-switch (access point)-multiple clients. Put the switch behind a router so all devices connected to either the switch or the router can access the internet simultaneously, while placing the switch right after the modem is just as equal to not putting it – it will waste some of your hardware and cables since all your switch ports aside from the two going between the router and modem will be useless to you.

how to connect switch, router and modem

Conclusion

Here we’ve walked you through the basic concept of switch vs router vs modem, as well as the similarities and differences concerning router vs modem and router vs switch. Hope that has clear some of your confusions. For any further solution related to fiber switch or network router, reach us via sales@fs.com.

What Is IPv6 And Why Is It Important?

IPv6 has been around for over a decade but is not yet seeing broad adoption. However, with the imminent exhaustion of available IPv4 addresses, the lack of IP addresses has become a more pressing problem. As the successor of IPv4, IPv6 will not only offer far more addresses, but will address assignments and additional network security features. What is IPv6 and how does it matters? What’s the differences between IPv4 vs IPv6? Let’s get some insight into these issues.

what is ipv6 protocol

What Is IPv6 and How Does It Matter?

IPv6 (Internet Protocol Version 6) is a network layer protocol which allows communication and data transfers to take place over the network. IPv6 came into existence in 1998 and was created out of the concern that demand for IPv4 addresses would exceed availability. IPv6 protocol, which is 128-bits, consists of eight numbered strings, each containing four characters, separated by colon. This gives us an unbelievable amount of unique IP addresses. Despite these, IPv6 protocol also simplifies address assignment (for computers) and provides additional security features. It greatly solves network bottleneck caused by the soaring amount of Internet-connected devices.

Advantages and Disadvantages of IPv6 Protocol

IPv6 protocol is all about future-proofing, with which every current household could have trillions of connected devices, each with their own individual IP addresses, and there would still be plenty of IPv6 addresses to spare, without the need for NAT. Here are the pros and cons of IPv6.

Pros of IPv6 Ptotocol
  • Increased Capacity: of address space—resources are efficiently allocated to accommodate additional web addresses.
  • Efficient Routing: allows for easy aggregation of prefixes assigned to IP networks.
  • Efficient Data Flow: enables large data packets to be sent simultaneously helping to conserve bandwidth.
  • Security: is improved due in part to improved authentication methods built into network firewalls.
Cons of IPv6 Ptotocol
  • Conversion: IPv4 is still widely used and the world is slow to convert to IPv6, the process of making the switch to IPv6 from IPv4 is slow and tedious.
  • Communication: IPv4 and IPv6 machines cannot communicate directly to each other, in the very rare circumstance that they would need to.
  • Readability: Understanding IPv6 subnetting can be difficult on its own, let alone trying to remember/memorize your IPv6 address.

IPv4 vs IPv6: What’s the Difference?

IPv4 protocol consists of four number strings – each containing three digits separated by dots. A standard IPv4 address is 32-bit and allows 4.2 billion unique IP addresses. By comparison, IPv6 uses longer IP addresses: with eight groups of four hexadecimal digits, separated by colons. Hence IPv6 significantly expands the pool of IP addresses. Besides, it also frees the internet from relying on NAT because of the dearth of IPv4. Ipv6 enables all devices to be accessible on the public network for easier management. Moreover, IPv6 is much secure than IPv4 at making sure Internet traffic gets to the correct destination without being intercepted.

ipv4 vs ipv6

What You Need to Enable IPv6

IPv6 has not yet put IPv4 into obsolescence, but we should at least get fully prepared for it. It would be better to make sure that any future PC, mobile device and gigabit Ethernet switch/router support IPv6 protocol. To use IPv6, you’ll need three things:

  • An IPv6-Compatible Operating System: Your operating system’s software must be capable of using IPv6. All modern desktop operating systems should be compatible.
  • A Ethernet Switch/Router With IPv6 Support: Check your network switch/router’s specifications to see if it supports IPv6 if you’re curious. Or when the need occurs, try to grasp network switch/router with IPv6 function.
  • An ISP With IPv6 Enabled:Your Internet service provider must also have IPv6 set up on their end.

Conclusion

IPv6 is rolling out steadily, but slowly. As IPv6-only networks can dramatically simplify network operations and keep costs down, there is reason to believe the trend will continue. It’s important to prepare for the future and get IPv6 working, however, there is no need to race to implement this or worrying about it too much. FS.COM offers IPv6 enabled 10GbE switch and other copper/fiber switch with advanced feature sets that can fit your varying demand. For further information, contact us via sales@fs.com.

OpenFlow Switch: What Is It and How Does it Work?

SDN (Software-Defined Networking) technology is generating huge interest in networking industry due to its ability to add higher agility and scalability for networks. At the core of the SDN technology is the OpenFlow protocol, and SDN with OpenFlow switch promises flexibility and fast configuration of communication networks. So what exactly is OpenFlow and OpenFlow switch? How does OpenFlow switch work to improve network agility and scalability? We try to explain it in detail and clear out the confusions.

What is OpenFlow and OpenFlow Switch?

OpenFlow is a programmable network protocol for SDN environment, which is used for communication between OpenFlow switches and controllers. OpenFlow separates the programming of network device from underlying hardware, and offers a standardized way of delivering a centralized, programmable network that can quickly adapt to changing network requirements.

openflow protocol

An OpenFlow switch is an OpenFlow-enabled data switch that communicates over OpenFlow channel to an external controller. It performs packet lookup and forwarding according to one or more flow tables and a group table. The OpenFlow switch communicates with the controller and the controller manages the switch via the OpenFlow switch protocol. OpenFlow switches are either based on the OpenFlow protocol or compatible with it.

what is openflow switch

How Does OpenFlow Switch Work?

An OpenFlow switch can only function with the collaborate work of three essential elements:  flow tables installed on switches, a controller and a proprietary OpenFlow protocol for the controller to talk securely with switches. Flow tables are set up on switches. Controllers talk to the switches via the OpenFlow protocol and impose policies on flows. The controller could set up paths through the network optimized for specific characteristics, such as speed, fewest number of hops or reduced latency.

OpenFlow Switch vs Conventional Switch: What’s the Difference?

In a conventional switch, packet forwarding (the data plane) and high-level routing (the control plane) occur on the same device. While for an OpenFlow switch, the data plane is decoupled from the control plane: with the data plane implemented in the switch itself but the control plane in software and a separate SDN controller makes high-level routing decisions. The switch and controller communicate by means of the OpenFlow protocol. OpenFlow switch hence boosts the following advantages:

  • With OpenFlow switch, the SDN controller could route non critical/bulk traffic on longer routes that are not fully utilized.
  • The SDN controller can easily implement load-balancing at high data rates by just directing different flows to different hosts, only doing the set-up of the initial flow’s.
  • Traffic can be isolated without the need for vlan’s, the SDN controller of OpenFlow switch can just refuse certain connections.
  • Setup a network TAP/Sniffer easily for any port or even specific traffic by programming the network to send a duplicate stream to a network monitoring device.
  • OpenFlow switch allows for the development of new services and ideas all in software on the SDN controller, as well to accelerate new features and services.

Why OpenSwitch Is the New Trend?

OpenFlow switch is designed to provide consistency in traffic management and engineering, by making control function independent of the hardware it’s intended to control. This combination of open source software and commodity hardware holds the potential for unprecedented efficiency and operational agility, which fitted well in the world where network becomes increasingly diverse and demanding. Enabling OpenFlow on physical switches and move to OpenFlow switch is something that most clients have been working toward. FS.COM switch product line consists of 10GbE switch, 40GbE switch and 100GbE switch that supports OpenFlow 1.3, which can be used as OpenFlow switches in open networking environment.

10G SDN Switch with L2/L3 ICOS, 48*10GbE ports + 6*40GbE ports
40G SDN Switch L2/L3 ICOS, 32*40GbE ports
100G L2/L3 Switch Loaded with ICOS, 48*25GbE ports +6*100GbE ports

Conclusion

OpenFlow switch addresses bottlenecks to high performance and scalability in SDN environments. Providing an efficient, vendor-independent approach to managing complex networks with dynamic demands, OpenFlow switch is likely to become commonplace in large carrier networks, cloud infrastructures, and other networks. FS.COM SDN OpenFlow switch has received great reputations from our customers, for more information, just reach us via sales@fs.com.

SFlow vs NetFlow vs SNMP: What Are the Differences?

Effective network monitor and traffic management are vital for ensuring peak network performance. While SFlow, NetFlow and SNMP offer different means to monitor network traffic, a question arises from time to time: SFlow vs NetFlow vs SNMP, which is better? These article will provide some insights into the issue by addressing differences between SFlow vs NetFlow, SFlow vs SNMP and NetFlow vs SNMP. However, the best solution always depends on your network condition and the resources at hand.

network monitoring-sflow vs netflow vs snmp

SFlow vs NetFlow: SFlow for Multiprotocol, NetFlow for Better Accuracy

SFlow vs NetFlow, the debate between these two flow protocols has been around for many years. SFlow was developed by InMon Corporation. It is designed to be compatible on many different platforms of switches and network routers, which allows SFlow to grow in popularity. SFlow uses a dedicated chip that is built into the hardware, which removes the load from CPU and memory. SFlow is sample based, so accurate representation of 100% of the traffic per interface is nearly impossible.

what is sflow

Then what is Netflow? NetFlow started as a proprietary technology developed by Cisco. It is presented in Cisco switches and routers that enables the network devices to export IP Flow data to a NetFlow collector/ NetFlow analyzer to be collected, processed and further dissected. NetFlow can be nearly 100% accurate at representing who is communicating through the device while having a very small impact on CPU.

what is netflow

The most notable difference between SFlow vs NetFlow is that SFlow is network layer independent and has the ability to sample everything and to access traffic from OSI layer 2-7, while NetFlow is restricted to IP traffic only. When hesitating to choose SFlow vs NetFlow, you may have to account for these aspects:

  • If your network supports a multiprotocol environment, you might want to consider SFlow protocol and switches.
  • If your network supports only IP based traffic, a NetFlow switch will do.
  • If you want 100% accuracy on network traffic and accountability, a NetFlow capable switch could be the better fit.

SNMP vs SFlow vs NetFlow: SNMP for Standard, SFlow/NetFlow for Higher Traffic Network

What is SNMP vs xflow (SFlow/NetFlow)? We’ve known that both SFlow and NetFlow can be used to gain network visibility and to measure bandwidth usage. They are also the most powerful monitoring option for high traffic networks and advanced users. On the other hand, SNMP (Simple Network Management Protocol) is the basic means of gathering bandwidth and network usage data. Monitoring the bandwidth usage of routers and switches port-by-port is the most common use of SNMP, as well as monitoring device readings such as memory, CPU load etc. SNMP is commonly recommended for most standard situations, since it does not support differentiation of traffic by service/ protocol.

SNMP vs SFlow: SNMP is proved to be a very popular network management protocol, mainly being used for network monitoring. Regarding performance management on routers/switches, especially in a multiprotocol case, a layer independent SFlow should be the choice to collect, monitor and analyze data traffic.

SNMP vs NetFlow: NetFlow emerges as a more compact protocol than SNMP that scales better for performance collection and network traffic management. A couple of big difference between SNMP vs NetFlow are:

  • SNMP can be used for real-time (i.e. every second) and although NetFlow provides beginning and end times for each flow, it isn’t nearly as real-time as SNMP.
  • NetFlow tells you who and with what is consuming the bandwidth, it is also much more verbose than SNMP and therefore NetFlow exports consume much more disk space for historical information.
  • SNMP can be used to collect CPU and memory utilization and that just isn’t available yet using NetFlow.

Conclusion

SFlow vs NetFlow vs SNMP, the differences are hence clear: SNMP for standard network monitoring whereas SFlow/NetFlow for high traffic network traffic collection, monitor and analyze. As for SFlow vs NetFlow, consider SFlow enabled data switch for multiprotocol network and NetFlow for IP based traffic that demands for improved accuracy and scalability. Vendors on the market are shipping out switches that support Sflow, NetFlow and SNMP, so when purchasing your next switch, a best of breed solution is the ideal investment. FS.COM offers quality copper switch, fiber switch and Gigabit PoE switch including 10Gb Ethernet switch, 25G Ethernet switch and 40/100Gb switch. For more information, feel free to reach us via sales@fs.com.

What Is Link Aggregation and Link Aggregation Switch?

1GbE network is ubiquitous at the edge of network, but it is reaching the limits as the demand for bandwidth continue to soar. Since 10 Gigabit network is still out of reach for most homes and small businesses, it is possible to upgrade to 10GbE without piling up the cost? You can surely make it by implementing link aggregation and link aggregation switch. We’re going to share some insights on deploying link aggregation with Ethernet switch.

what is link aggregation

What Is Link Aggregation and Link Aggregation Switch

Link aggregation allows one to combine multiple network connections in parallel to increase throughput, and to provide redundancy in case one link goes down. Besides, link aggregation load balance enables the processing and communications activity to be distributed across several links in a trunk, thus not overwhelming a single link. Moreover, improvements within the link are obtained using existing hardware, so you don’t have to upgrade to higher-capacity link. To configure link aggregation, we need to apply a standard, vendor-independent link aggregation protocol that supported by IEEE 802.3ad – LACP (link aggregation control protocol).

configure link aggregation switch

Link aggregation technology can be used for core switching equipment such as link aggregation switch. Link aggregation switch, or LACP switch, is to set up or configure switch to achieve this technology. Link aggregation switch can be Gigabit Ethernet switch or 10 Gigabit switch that supported LACP.

What Are the Benefits of Link Aggregation Switch?

Before reaping the benefits of link aggregation switch, check to see if your devices can fulfill the following prerequisites.

Generally, all of the aggregated links must:

  • be in full duplex mode
  • use the same data transmission rates (at least 1 Gbit/s)
  • use parallel point-to-point connections
  • connect to precisely one endpoint on a switch or server. Link aggregation using multiple switches to one link-aggregated endpoint.

If all the above requests are fulfilled, then you would get these benefits after setting up link aggregation.

  • Increased reliability and availability. If one of the physical links in the link aggregation group (LAG) goes down, traffic is dynamically and transparently reassigned to one of the other physical links.
  • Better use of physical resources. Traffic can be load-balanced across the physical links.
  • Increased bandwidth. The aggregated physical links deliver higher bandwidth than each individual link.
  • Cost effectiveness. A physical network upgrade can be expensive, especially if it requires new cable runs. Link aggregation increases bandwidth without requiring new equipment.

How to Configure Link Aggregation Switch?

Here is a step-by-step guide for setting up link aggregation between link aggregation switches in your network. Before getting started, confirm the following aspects:

Make sure that both devices support link aggregation.

1. Configure the LAG on each of the two devices.

2. Make sure that the LAG that you create on each device has the same settings for port speed, duplex mode, flow control, and MTU size (on some devices, this setting might be called jumbo frames).

3. Make sure that all ports in a LAG have the same virtual local area network (VLAN) memberships.

4. If you want to add a LAG to a VLAN, set up the LAG first and then add the LAG to the VLAN; do not add individual ports.

5. Note which ports on each device you add to the LAG, and make sure that you connect the correct ones.

6. Use Ethernet or fiber cable to connect the ports that you added to the LAG on each device.

7. Verify that the port LED for each connected port on each switch is blinking green.

8. Verify in the admin interface for each device that the link is UP.

The video below illustrates the procedures to set up LACP between a Cisco switch and FS network switch.

Conclusion

Link aggregation is the efforts made to set up parallel network structures to provide redundancy, or to improve performance, increases bandwidth and provides graceful degradation as failure occurs. Configure link aggregation switch can be made easier if you properly perform the above instructions. FS.COM is committed to research and develop data switch and Gigabit PoE switch solutions for SMBs, enterprise networks and data centers. For more details, feel free to contact us via sales@fs.com.

Related Article: LACP vs PAGP: What’s the Difference?




Core Switch & Edge Switch: How to Choose the Right One?

Choosing a data switch for your network can be a daunting task, given the myriads of vendors out there who are vying for providing network switches with fancy functions and feature sets. It may get more challenging when deciding which core switch and edge switch to buy: you have to make sure the switch you get is up to date so it can take advantage of latest technologies, and allows you to squeeze every last drop of performance out of the system. So, whether to choose a core switch or edge switch? Let’s go through their functions and roles within a network, and link these with you are gonna achieve, then you may find the answer.

core switch and edge switch

What Is a Core Switch?

A core switch is a high-capacity switch generally positioned within the backbone or physical core of a network. Core switch is also regarded as a backbone device that is vital to the successful operation of a network: it serves as the gateway to a wide area network (WAN) or the Internet, so that you can use it to connect to servers, your Internet service provider (ISP) via a router, and to aggregate all switches. A core switch need to be powerful enough and have significant capacity to handle the load sent to it, which means it should always be a fast, full-featured managed switch.

In a public WAN, a core switch interconnects edge switches that are positioned on the edges of related networks. In a local area network (LAN), this switch interconnects work group switches, which are relatively low-capacity switches that are usually positioned in geographic clusters.

core-edge switch connectivity

How About an Edge Switch?

As the name indicates, an edge switch is a switch located at the meeting point of two networks. These switches connect end-user local area networks (LANs) to Internet service provider (ISP) networks. Referred to as access nodes or service nodes, an edge switch connects client devices, like laptops, desktops, security cameras, and wireless access points to your network. Edge switches for WANs are multiservice units supporting a wide variety of communication technologies, it also provides enhanced services such as virtual private networking support, VoIP and quality of service (QoS). Generally, smart switches and even unmanaged switches are valid options at the edge of your network. But for some downtime-sensitive applications or where security matters, a managed switch can also be equally used at the edge.

Core Switch/Edge Switch Selection: What Exactly Matters?

To select the appropriate switch for a layer in a particular network, you need to make clear specifications regarding current/future needs, target traffic flows and user communities.

1. Future Growth

Switches comes in different sizes, features and function, choosing a switch to match a particular network involves a solid network plan for any future growth. With that in mind, you would want to purchase a switch that can accommodate more than 24 ports, such as stackable or modular switches that can scale.

2. Performance

When selecting a switch for the access, distribution, or core layer, consider the ability of the switch to support the port density, forwarding rates, and bandwidth aggregation requirements of your network.

An edge switch needs to support features such as port security, VLANs, Fast Ethernet/Gigabit Ethernet, PoE and link aggregation. While a core switch also needs to support link aggregation to ensure adequate bandwidth coming into the core from the distribution layer switches. Also, a core switch support additional hardware redundancy features like redundant power supplies, and hot-swappable cooling fans. So there is no downtime during switch maintenance.

FS.COM Core Switch and Edge Switch Solution

FS.COM offers a large portfolio of Ethernet switches including 10GbE switch, 25GbE switch, 40GbE switch and 100GbE switch, each with different port configurations and moderate to advanced feature sets that tailored for enterprise networks and data centers. The core switch and edge switch in FS.COM are presented as follows.

Core Switch S5850-32S2Q, S5850-48T4Q, S5850-48S6Q, S5850-48S2Q4C, S8050-20Q4C, N5850-48S6Q, N8000-32Q, N8500-32C, N8500-48B6C
Edge Switch S3700-24T4S, S2800-24T4F, S3800-24T4S, S3800-48T4S, S3800-24F4S, S5800-8TF12S, S5800-48F4S

All these network switches are tested with the highest industry standard in rigorous environment, for more specifications, just reach out to us via sales@fs.com.

Why You Need a Managed 8 Port PoE Switch

Gigabit PoE switch, or power over Ethernet switch, has seen massive adoption these days by providing improved network flexibility and performance. A Gigabit PoE switch transmits both data and power supply simultaneously to network devices such as VoIP phones, Wireless AP and network cameras without changing existing Ethernet cabling structure, which in turn, greatly reduce the cabling complexity as well as the cost of installation and maintenance. These exists 8/10/16/24/48 port PoE switches with gigabit speed and essential managing functions, among which a 8 port Gigabit PoE switch is poised as a cost-effective choice for home and business use. Let’s see what we can achieve with a 8 port PoE switch.

8 Port PoE Switch: Managed or Unmanaged?

Like choosing a standard data switch, we’ll inevitably find ourselves in a dilemma: should we choose a managed or unmanaged Gigabit PoE switch? The answer is pretty easy and straightforward – a managed PoE switch is always better. Managed switches typically offers advanced security features and allows for administrators visibility and control. Besides, a managed PoE switch also offers higher level of manageability and control, so you’re able to program each port individually while keep the network operating at peak efficiency. This results significant saving on power and cost. Additionally, a managed Gigabit PoE switch is capable of configuring, managing and monitoring the LAN – setting/disabling the link speed, limiting bandwidth or grouping devices into VLANs.

gigabit poe switch

How to Use a Managed 8 Port PoE Switch?

Managed Gigabit PoE switch has become a preferable option for enterprise networks, with dramatically decreased price, expanded feature sets and improved ease of use. Experience from those who have dealt with a managed 8 port PoE switch also demonstrates that this is a journey well worth taking. You can use a managed 8 port PoE switch to creates VLANs and limit access to specific devices, to use Layer 3 routing capability and to remotely monitor network performance.

Common applications of a managed 8 port PoE switch includes the following aspects.

Connect IP Cameras, Wireless Access Points and IP Phones

To connect this PoE enabled device, you need to know the power consumption of these device, as well as a total power/ power per port of your PoE switch. For example, you have a managed 8 port PoE switch with a power budget of 250W with the maximum power consumption per port 30W. Assume to power an IP Camera network, you’ll need a total power per port of 30W. Then you can connect all the 8 ports with IP cameras with a total power consumption of 240W (within the budget of 250W).

Voice over IP phones Enterprise can install PoE VoIP phone, and other Ethernet/non-Ethernet end-devices to the central where UPS is installed for un-interrupt power system and power control system.
Wireless Access Points Museum, sightseeing, airport, hotel, campus, factory, warehouse can intall the WAP anywhere.
IP Camera Enterprise, museum, campus, hospital, bank can install IP camera without limits of install location – no need electrician to install AC sockets.

The key applications are illustrated as following.

8 port poe switch application

Connect Non-PoE Switches and Devices

One of the frequently asked question is that whether we can mix PoE and Non-PoE devices on the same PoE network. The answer is positive. PoE will only send power if it requested by the device. Otherwise the switch just interacts with it as if it were a regular switch. When connecting a managed 8 port PoE switch to non PoE compatible devices, a PoE splitter is commonly adopted – it delivers data and DC power through separate connections.

mix poe switch with non poe switch

FS.COM 8 Port PoE Switch Solution

Managed gigabit PoE switch has become a better choice if you ever anticipate advanced network features to meet business growth. A managed 8 port PoE switch is the best fit for SMB network and home use with relatively small traffic flow. FS.COM fully understands customer expectations and offers managed 8 port PoE switch with the price starting from $159. Besides, we also provide 24 port PoE switch and 48 port PoE switch to help future-proof your network and unleash the potential of your business. Feel free to contact us via sales@fs.com for more solutions.

Network Switch Port Mirroring vs. Network TAP

Nowadays networks are carrying significant volumes of data at increasing speeds – it is getting more complex than ever. Consequently, network visibility is critical to monitor, manage and protect your network. So having access to inner working condition of the network is paramount to every network manager. Network TAP and network switch port mirroring provide direct access to the actual packets navigating across networks. If both options work, which is a better choice? And when should we choose one over the other? We try to address those issues here.

Basics of Network Switch Port Mirroring

Network switch port mirroring is nothing new for us. It is performed by a mirror port – a software feature built into a network switch that creates a copy of selected packets passing through the device and sends them to a designated mirror port. It enables a network manager to configure or change the data to be monitored. Since the primary purpose of a network switch is to forward production packets, port mirroring data is often with a lower priority. Besides, switch port mirroring uses a single egress port to aggregate multiple links, so it is easily oversubscribed.

network switch port mirroring

Advantages
  • Low cost, using existing switch capabilities.
  • Remotely configurable through the network.
  • Captures intraswitch traffic.
Disadvantages
  • Drops packets on heavily used full-duplex links.
  • Filters out Physical Layer errors.
  • May burden the switch’s CPU to copy data.
  • May change frame timing, altering response times and slowing network performance.

Network TAP Explanation

A network TAP (Test Access Point) is a passive device that used to directly connect to the cabling infrastructure. Instead of two switches or routers connecting directly to each other, the network TAP is put between the two devices and all data flows through the TAP. With an internal splitter, the TAP creates a copy of the data for monitoring while the original data continues unimpeded through the network. In this case, packet of any size can be copied by TAP – it thus eliminates any chance of oversubscription. Once the data is TAPed, the duplicate copy can be used for any sort of monitoring, security, or analytical use.

network tap

Advantages
  • Captures send and receive data streams simultaneously, eliminating the risk of dropped packets.
  • Provides full visibility into full-duplex networks.
  • Captures everything on the wire—including Physical Layer errors—even when the network is saturated.
Disadvantages
  • Requires the purchase and installation of additional hardware.
  • Analysis device may need dual-receive capture interface.
  • Only captures data between network devices; can’t monitor intra-switch traffic.

Network Switch Port Mirroring vs. Network TAP: Differences?

The differences concerning port mirroring and network TAP is summarized as following.

  • TAPs create an exact copy of the bi-directional network traffic at full line rate, providing full fidelity for network monitoring, analytics and security. While network switch mirror ports are easily oversubscribed – resulting in dropped packets, which leads to inconsistent results for monitoring and security purposes.
  • Passive TAPs provide continuous access to traffic and require no user intervention or configuration once installed. Network switch port mirroring, however, can have a negative performance impact on the switch itself, sometimes affecting network traffic.
  • Network TAPs allow for traffic monitoring for a particular segment. But port monitoring traffic output can change from day to day or hour to hour – resulting in inconsistent reporting. When configured mirror ports incorrectly, it will impact network performance.
  • TAPs are usually protocol transparent – be it carried in the traffic or if it is IPv4 or IPv6. All traffic is passed through a passive TAP.
  • Network switch mirror ports are limited in number compared to the number of ports that may require monitoring, and consume ports that could otherwise be carrying production traffic.

Port Mirroring vs. Network TAP: When to Use Which?

Simply put it, TAPs are a key component and should be applied in any system demanding 100% visibility and traffic fidelity. And whenever traffic volumes are moderate to high, it’s better to deploy network TAPs. Note that inserting a TAP into an existing network link requires a brief cable disconnect, so TAPs are typically installed during a maintenance window, or to install it during the early design phase.

On the other hand, network switch port mirroring works best for ad hoc monitoring of low volumes of data in locations where TAPs have not been installed. It still represent the only means for accessing certain types of data, such as data crossing port-to-port on the same switch, remote locations with modest traffic that cannot justify a fulltime TAP, or traffic that stays within a switch that never reaches a physical link.

Conclusion

There is no doubt that both TAPs and network switch mirror ports can provide valid access to data if used correctly. Choose TAPs when you can justify the cost, while opt for port mirroring where you must. FS.COM is backed by a professional and experienced team to provide solutions for network TAPs and Ethernet switch, for more details, feel free to contact us via sales@fs.com.

VXLAN Enabled Network Switch: What Is the Benefit?

VXLAN (Virtual Extensible Local Area Network) technology has attracted much attention these days in networking industry – since traditional VLAN links proven insufficient to cope with rigid requirements of cloud providers. Network switch with VXLAN capability is proposed to extend VLAN and overcome the limited scalability posed by VLAN. The VXLAN-enabled Ethernet switch provides layer 2 connectivity extension across the layer 3 boundary, enabling large-scale virtualized and multitenant data center designs over a shared common physical infrastructure. So it is the right time to enable VXLAN to network switch? How to get a decent VXLAN switch? We try to shed some lights on these issues.

What Is VXLAN?

VXLAN is a network virtualization scheme that enables users to create a logical network for virtual machines (VMs) across different networks. And it allows users to create a layer 2 network on top of layer 3 through encapsulation. In this way, you could potentially create 16 million networks using VXLAN – a lot more compared to the 4096 VLANs. VXLAN uses Layer 3 multicast to support the transmission of multicast and broadcast traffic in the virtual network, while decoupling the virtual network from the physical infrastructure. The following picture illustrates how VXLAN works.

what is vxlan

VXLAN gateway: A VXLAN gateway bridges traffic between VXLAN and non-VXLAN environments by becoming a virtual network endpoint. For example, it can link a traditional VLAN and a VXLAN network

VXLAN segment: A VXLAN segment is a Layer 2 overlay network over which VMs communicate. Only VMs within the same VXLAN segment can communicate with each other.

VNI: The Virtual Network Identifier (VNI), also referred to as VXLAN segment ID. The system uses the VNI, along with the VLAN ID, to identify the appropriate tunnel.

VTEP: The VXLAN Tunnel Endpoint (VTEP) terminates a VXLAN tunnel. The same local IP address can be used for multiple tunnels.

VXLAN header: In addition to the UDP header, encapsulated packages include a VXLAN header, which carries a 24-bit VNI to uniquely identify Layer 2 segments within the overlay.

What Makes a Good VXLAN Network Switch?

Network switch is a major building block in data transmission. Compared with traditional Ethernet switch, a VXLAN network switch generally possesses benefits like improved scalability (delivers a scale version of layer 2 network on highly scalable and proven layer 3 networks) & agility (provides VM ready networking infrastructure). VXLAN capable network switch also offers multiple solutions for private, public, & hybrid cloud networks. Moreover, network switch of this type also delivers higher programmability: it can work with network controllers and cloud orchestration stack such as OpenStack. You have account for at least the following aspects when choosing a VXLAN capable network switch.

    • Look for right ASIC.

    -Packets per second. A 32×100 GbE switch will have 4.47 billion packet per second (with all sort of packet size), make sure your vendor has that covered.

   -Latency. If this matters to you, 300 Nano seconds latency at all packet sizes is pretty easily available if you are looking for it.

    -Micro burst absorption ability.

   -Fairness on how the buffers are shared between ports.

  • Look for right scale. Considering the number of Layer 3 route a VXLAN network switch can support, the VXLAN VNI scale and the VTEP scale.
  • Open Networking. Look for a network switch that supports open networking and can give you disaggregated options if needed. In short, look for a vendor that can support multiple OS options.

FS.COM VXLAN Enabled Network Switch Solution

FS.COM offers a broad product line of network switches with the data rate spanning 1G to 100G. Among which the 100Gb switch S5850-48S2Q4C and S8050-20Q4C are Ethernet switches that support VXLAN function. S5850-48S2Q4C features 48 10G SFFP+ ports and 6 hybrid 100G uplink slots, while S8050-20Q4C has 20 40G QSFP+ ports and 4 100G QSFP28 ports. Both of the VXLAN network switches are traditional L2/L3 switches with advanced features including MLAG, VXLAN, IPv4/IPv6, SFLOW, SNMP etc, which is ideal for traditional or fully virtualized data center.

vxlan enabled network switch

The following diagram summarizes the feature sets of these VXLAN enabled network switches.

Port Attributes
S5850-48S2Q4C
S8050-20Q4C
Switch Class
Layer2/3, data center, Metro
Layer2/3, data center, Metro
10GbE SFP+ Ports
48
4 (Combo)
40GbE QSFP+ Ports
2
20
100GbE QSFP28 Ports
4
4
Max. 10GbE Density
72
96
Max. 40GbE Density
6
24
Max. 100GbE Density
4
4
Switch Fabric Capacity
1.92Tbps
2.4Tbps
Non-blocking Bandwidth
960Gbps
1.2Tbps
Forwarding Rate
1200Mpps
1200Mpps
Latency
612ns
612ns
Jumbo Frame
9600 Bytes
9600 Bytes
Typical/Max Power Draw
160W/200W
120W/160W

VXLAN based network switch has been accepted as a better solution with evident benefits, including sufficient links and capacity to handle massive traffic in cloud environment, the ability to stretch L2 network over a L3 network, and unsurpassed reliability and scalability. FS.COM offers professional and cost-efficient network switch solutions for enterprise networks and data centers, for more details, please contact us via sales@fs.com.

How to Set up NVR with a PoE Switch?

Security is paramount both in life and business, hence an increasing number of people are protecting their homes and business with surveillance systems mounted around their property. NVR (Network Video Recorder) serves as the nerve of a sophisticated security – it provides constant coverage of your property and allows you to view in real time with crystal-clear, high-resolution imagery. Then how to set up a NVR with your network devices to reap the great benefit it brings? We will illustrate common NVR Setup with a PoE switch.

What Is NVR?

A NVR consists of a computer and special video management software. It is a true digital system that records the digital images or videos received over the network onto a hard disk or other storage device. So you could view, playback, and download recordings when needed. Usually based on Windows or Linux environments, a NVR usually has a user friendly graphical user interface, flexible recording, playback capability, intelligent motion detection and camera control capability. Remote access is also available with NVR, and other benefits include ease of installation and usage, the capability of handling large amounts of video streams. There are a few configuration options for setting up a NVR, among which with network switch such as PoE switch is gaining increasingly recognition.

Basic NVR Setup: With PoE Switch

Unlike standard network switch, a PoE switch is capable of delivering data and power simultaneously through an Ethernet cable. This type of switch will act as a hub but can also supply power to POE compatible devices such as IP security cameras, without the need for an external power source or extra power wires. This makes for less installation cost and cabling complexity – you can handle your power and video over a single CAT5 cable. Here we use FS 8 port PoE switch as an example to show how to connect your NVR to a PoE switch, just perform the following steps:

nvr setup with poe switch

  • Connect an Ethernet cable from the LAN port on the PoE switch to your router. Connect the power cable to the PoE switch to a power outlet.
  • Connect IP cameras to ports #1 – #8 on the PoE switch using the Ethernet cables. The PoE switch will provide power and video transmission the same way your NVR does.
  • You must add the cameras to your NVR to view the cameras and enable recording. To do this, follow the steps in your NVR’s instruction manual.
NVR Setup With PoE Switch: How to Get More Ports?

It happens sometimes that you want to add more ports to the network, but cannot justify the price to replace a higher-density switch. Here we offer you a cost-effective solution by leveraging some network components at hand: a modem/router combo – the connection between your internal devices and the outside (Internet), and a hub.

nvr setup with ip camera

  • Run a CAT5 cable (shown in blue) to connect your cameras to the ports of a PoE switch. The POE switch will act as a HUB to connect them to the local network.
  • Connect a 8-port hub to your router, then link the PoE switch with an open port on the hub. In this way, the other 7 ports are available for adding more devices.
  • Plug your NVR into an open port on your router. Now your cameras and your NVR are all on the same network. With some minor configuration (port forwarding), you can access your NVR remotely since it is plugged into your modem/router.
Conclusion

NVR / IP camera setup necessitates the use of an external PoE switch to simplify or extend the wiring of your installation. Sometimes, a router and a hub are required to get extra port to expand your system. Ever confused by PoE switch connectivity issues? Don’t hesitate to connect FS.COM via sales@fs.com to find more solutions!