Category Archives: Network Switches

How to Choose A Suitable Power Over Ethernet Switch?

Share

As is known to us all, a Gigabit Ethernet switch is always a popular choice for network users given its lower price and relatively good function. However, you may be aware of the trend that an increasing number of network users are likely to buy a power over Ethernet switch (PoE switch) in recent years. Since it has many advantages and can be used in different applications. For example, it supports power and data transmission over one Ethernet cable at the same time which dramatically simplify the cabling process and cut network cost. Then, here comes the question: how to choose a suitable power over Ethernet switch? Are there any buying tips? Next, let’s find the answers together.

power over Ethernet switch applications

What Type of Power Over Ethernet Switch Should I Buy?

Normally, there are three types of power over Ethernet switches, namely unmanaged PoE switch, managed PoE switch and smart PoE switch. And the managed switches are the most popular ones in actual applications.

An unmanaged switch is the most basic form of a network switch. Normally, an unmanaged PoE switch only allows your devices to connect with one another. It is best suited for home and small office uses. If a business handles sensitive information such as an accounting firm or a bank, such switch is not recommended. An unmanaged switch is the most basic form of a network switch.

Contrary to an unmanaged PoE switch, a managed one offers full management capabilities and security features. It can be configured and properly managed to offer a more tailored experience. It can help you monitor the network and control overall traffic. Such switch is usually used in enterprise networks and data centers.

While, a smart PoE switch (or hybrid PoE switch), is a switch that has partial functions of a managed one. It enables you to configure ports and set up virtual networks, but doesn’t allow network monitoring, troubleshooting, or remote accessing. It is usually used in business applications such as VoIP and smaller networks.

Other Main Factors on Buying A Power Over Ethernet Switch

In addition to choosing from different types mentioned above, you have many other things to consider when buying a power over Ethernet switch. Such as the following aspects:

  • Port Numbers: Normally, network switches have different port numbers such as 8-port PoE switch, 24-port PoE switch, etc. The larger the network, the greater number of ports you’ll need. It is better to choose a switch that has more interfaces than you actually need.
  • Maximum Power Supply: The maximal power supply of your PoE switch matters as well. If it is less than the overall power needed from your powered devices (IP cameras, for example), then the PoE switch won’t provide enough power for all your PoE IP cameras and the insufficient power supply may cause poor device performance like video loss.
  • Maximum Power Consumption: You can estimate the power consumption of all your powered devices (PDs) in advance to see if your power over Ethernet switch can support. Normally, there are two types of PoE standards, namely IEEE802.3af and IEEE802.3at. IEEE802.3af could provide up to 12.95W of DC power on each PD (power loss due to network cables has been counted in) while IEEE802.3at can pump out up to 25.5W. PDs are only suitable for IEEE 802.3at PoE standard when their power draw is between 12.95-25.5W.
  • Forwarding Rate: Switches have different processing capabilities with different rates at which they process data per second. Data forwarding rates is very important when selecting a switch. For a Gigabit PoE switch, a normal Gigabit Ethernet port attains a rate of 1Gbps. That is to say, a 48-port PoE switch operating at full wire speed generates 48Gbps of traffic. If the switch only supports a forwarding rate of 32Gbps, it can not run at full wire speed across all ports simultaneously.
  • Technical Support: You can consider whether the power over Ethernet switch provider offers a local support team or not to support you if you have any problem in configuring the switch or other issues.

Conclusion

From all the above, you may have a general understanding of how to choose a suitable power over Ethernet switch. You can decide which type of switch you need first, and then add additional needs such as port numbers, maximum power supply, maximum power consumption, forwarding rate, etc. to help you get the most appropriate switch you want.

Related Articles:

Why You Need a Managed 8 Port PoE Switch

Power over Ethernet Switch Explained: Why Choose PoE switch over PoE Injector?

Why Should You Use A Managed Switch With PoE?

Share

Nowadays, managed PoE switches are getting more and more popular among network users. Many people are likely to choose a managed switch with PoE function rather than an unmanaged one. Why does this appear? Are there special reasons? Look at this post to learn why you should use a managed switch with PoE as well as the difference between an unmanaged PoE switch and managed PoE switch.

What Is A Managed Switch?

You may know that network switch can be divided into two types in management level, namely managed switch and unmanaged switch. Then, what is a managed switch? What’s the difference between unmanaged vs. managed switch?

Actually, a managed switch is a switch that allows access to one or more interfaces for the purpose of configuration or management of features such as Spanning Tree Protocol (STP), port speed, VLANs, etc. It can give you more control over your LAN traffic and offer advanced features to control that traffic. For example, the FS S5800-48F4S 10GbE switch, supporting MLAG, VxLAN, SNMP, etc.

FS S5800-48F4S 10GbE switch

On the contrary, an unmanaged switch just simply allows Ethernet devices to communicate with one another, such as a PC or network printer. It is shipped with a fixed configuration and do not allow any changes to this configuration.

Advantages of A Managed Switch

Normally, a managed switch is always better than an unmanaged one since it can provide all the features of an unmanaged switch. Compared with an unmanaged switch, a managed one has the the advantages such as administrative controls, networking monitoring, limited communication for unauthorized devices, etc.

What Is PoE? Why Should You Use A Managed Switch With PoE?

From the introduction above, you may be aware of the importance of a managed switch. Then, why should you use a managed switch with PoE? Do you know what a managed PoE switch is?

What Is PoE?

Actually, PoE means power over Ethernet. The main advantage or feature of PoE is delivery of data and power at the same time over one Cat5e or Cat6 Ethernet cable. It ends the need for AC or DC power supplies and outlets. What’s more, a remote installation costs less than fiber as no electrician is required.

Why Should You Use A Managed Switch With PoE?

PoE is not recommended for sending network data over long distances, or for extreme temperatures unless industrial designation is present. It is often seen to be used in a Gigabit Ethernet switch, and it is mainly used with IP cameras, VoIP phones and WAP (wireless access points). These are the reasons why you should use a managed switch with PoE. Here, let’s take FS 8-port Gigabit PoE+ managed switch as an example.

FS 8-port Gigabit PoE+ managed switch

The FS 8-port Gigabit PoE+ managed switch can offer you cost-effective and efficient PoE solution for business. As you can see from the following picture and video, if you need to connect to NVR for better surveillance network building or for IP camera consideration, such a managed PoE switch is an ideal choice.

Application layout of a managed switch with PoE

Conclusion

With all the illustration above, you may have a general understanding of what a managed PoE switch is and why you should use it in certain circumstances. A managed switch with PoE not only includes all the functions that a managed switch has, but also enables you to transfer data and power at the same time over one Cat5e or Cat6 Ethernet cable.

Related Article:

Why You Need a Managed 8 Port PoE Switch

FS.COM PoE Switch Solution

Why Should You Use Open Source Switch?

Share

Open networking seems to be more and more popular compared with traditional networks at present. As one of the most important parts in open network, open source switch has raised much attention. Then, what is open source switch? Why should you use it? Just read through this post to get all the answers as well as the introduction on different types of open source switches.

What Is Open Source Switch?

Normally, an open source switch is a network switch whose hardware and software are provided by separate entities and can be changed independently without affecting each other. That is to say, the open source switch hardware can support multiple operating systems of different vendors, or the same operating system can be run on multiple hardware configurations.

It is obvious that the open source switches are contrary to closed switches, whose hardware and software are always purchased together. For example, if you buy a Juniper EX or MX, you need to buy JUNOS. If you buy a Cisco Catalyst switch, you have to buy IOS. By contrast, open source switch is full of choice. It gives vendors choice of rebranding an open switch by adding their own software and selling it all as a package.

Open source switch with Cumulus Linux

Open Source Switch Types

Normally, open source switch can be divided as three types, namely, bare metal switch, white box switch and brite box switch.

Bare metal switch

A bare metal switch is an open source switch which is not loaded with any operating system and the open source switch hardware in it only has basic support from original design manufacturer. It comes with a boot loader called the Open Network Install Environment (ONIE), which allows you to load an operating system onto the switch. For such switch, you can choose to load the open source switch OS you want at any time. You can choose the applications you need to run first, and then choose the operating system that best supports the applications or best fits your operational environment. Finally, you choose the hardware to run it all. This is kind of like how we’ve been building servers.

White Box Switch

A white box switch can be regarded as a bare metal switch with network OS preloaded. Such switch is also non-branded. It’s still an open switch because the OS and the hardware are not integrated. You just got a package of a bare metal switch and an operating system.

Brite Box Switch

A brite box switch is made by an Original Design Manufacturer (ODM), and is often the same switch offered by the ODMs as bare metal but with a brand name like Dell or HP. It can be regarded as a branded white box switch.

Why Should You Use Open Source Switch?

From the definition and different types of open source switch, you may find it beneficial to use it. It has the following advantages:

  • Multiple choice: There’s a multitude of operating systems you can load for different needs, such as Broadcom’s FastPath, Big Switch Networks’ Switch Light, Cumulus Networks’ Cumulus Linux, Pica8’s PicOS, etc.
  • Flexible software solution: It offers composable networking solution with open source Network Operating System (NOS). You can replace the NOS you installed before and then choose another one for your actual needs.
  • Enable premium NOS applications: It enables you to selectively load an open source switch OS, which offers a scalable solution to enable both network operators and vendors to get premium open source NOS applications rapidly. Some software (Cumulus Linux, PicOS, etc.) support a rich set of L2/L3 networking features that are compatible with a wide variety of 10G, 25G, 40G and 100G hardware platforms from multiple vendors.
  • Realize customizable infrastructures in network: It gives you option to deploy the right combination of hardware platform, network operating system and individual software components to best suit their specific use scenarios.
  • Reduce failure domains and improve overall performance: The flexibility of combination on open source switch hardware and software enables you to install and operationalize individual protocol stacks as applications or micro-features. This facilitates the design of composable networks, thus reduces failure domains and improve performance.

Last but not least, compared with open source switch, the traditional analytics tools are not good enough to take advantage of the new opportunities offered by SDN such as network programmability, automation and optimization.

Conclusion

From all the above, you may have a general understanding of what an open source network is and why you should use it. Among the three open source switch types, bare metal switches only matter to commercial software providers (like Facebook or Google). White or brite box solutions are the only real open switching choices for normal-sized network operators. For example, you can use the combination of an open 10Gb switch with a NOS you want as white box solution for your small-to-medium-sized network construction.

Related articles:

Everything You Should Know About Cumulus Linux

Why FS Adds Cumulus Support to the N-series Data Center Switches

Network OS Systems for Bare Metal Switch

Share

As you may know that a network switch with no network operating system (NOS) is referred to as a bare metal switch. Unlike a white box switch with vendor’s own or 3rd party already loaded NOS, a bare metal switch allows you to load a network OS according to your own will. After installing the NOS, these two types of switches are normally regarded as the same. Then, how to choose network OS systems for bare metal switches? Listed below are three popular choices, namely Cumulus Linux, IP Infusion OcNOS™ and Pica8 PICOS.

Option 1: Network OS Cumulus Networks Cumulus Linux

Cumulus Linux is a powerful open network OS designed by Cumulus Networks to help build and operate large data center networks. Therefore, the Cumulus Linux is a perfect match for a data center switch which operates in bigger networks such as enterprise, data center and metro Ethernet scenarios. It is a true Linux distribution with a hardware abstraction layer that runs on a variety of commodity hardware. Cumulus Linux uses automated tools to manage the network infrastructure and hopes to automate the configuration of network switches with these existing tools.

Cumulus Linux network OS

Additionally, Cumulus Linux offers economical scalability and choice flexibility to run multiple network paths without the need for multiple switches. The main features of Cumulus Linux lie in the following aspects:

  • Economical Scalability: Customers can get increased operational efficiency with commodity hardware and a standardized Linux stack.
  • Built for the Automation Age: This Debian-based Linux distribution offers a completely open architecture and is designed for easy automation.
  • Standardized Toolsets: It allows open source and commercial Linux applications to run natively. You can use your own automation or other tools to improve efficiency and multiply the number of switches per operator.
  • 70+ Hardware Platforms for Choice: You can choose compatible hardware based on your needs and your budget flexibly.

Cumulus Linux enables modern data center architectures while providing a transition path for traditional data center architectures. It supports layer 2, layer 3 and overlay architectures. This open architectural approach enables a wide range of solutions such as Clos, L3 network, L2 network, campus expansion, out of band management, etc.

Cumulus Linux architecture

Option 2: Network OS IP Infusion OcNOS™

OcNOS™ is designed to address the needs of public, private or hybrid cloud networks. It offers Carrier-grade network OS for bare metal switches. It includes many advanced capabilities such as extensive switching and routing protocol support, MPLS, SDN, etc.

In addition to providing industry standard CLI, OcNOS™ supports all standard MIBs , other standard operation and management tools as well. The main features are:

  • Support Multiple Deployments: The several abstraction layers allow seamless portability across diverse network hardware.
  • Modular Software Design: This design can make it customized, built and packaged with minimal software features to reduce CapEx and device footprint.
  • Wide Interoperation: With CLI and SNMP management, the the OcNOS-based network node is easy to operate and interoperate with another vendor node.
  • Support for disruptive networking technologies: It enables SDN support through OpenFlow and can provide custom programmable network operations.

Option 3: Network OS Pica8 PICOS

The PICOS is also an open Linux-based network OS built on the robust Debian Linux environment for bare metal switches. It supports all major L2 and L3 switching. What’s more, it can leverage a vast array of standard Linux tools and supports IPv4 and IPv6 static routing as well.

In addition to the basic features mentioned above, the PICOS supports other functions depending on its two different editions. For PICOS enterprise edition, it supports CrossFlow dual control plane technology for improved OpenFlow integration, scale, and management. For PICOS SDN edition, it uses OpenFlow to control MPLS, GRE, NVGRE or VXLAN tunnels, delivering on the promise of open programmability.

Conclusion

From all the above, you may have a general understanding of the three main network OS systems. You can choose a proper one according to your actual needs. For example, if you need a Debian-based Linux distribution NOS with Clos solution for a 40GB switch, Cumulus Linux is a wise choice.

Related Articles:

How to Select Transceivers for White Box Switch?

Network OS Comparison: Open Source OS or Proprietary OS

12-Port 10GbE SFP+ Switch Recommendation

Share

Nowadays, network users tend to have multiple requirements on a single network switch, especially on the functions and ports. Much evidence shows that the 10GbE SFP+ switch is getting more popular with greater demand. Listed below are some typical examples gathered from different forums on what switch they really need:

– “I want a 10G switch (8 or 12 SFP+ ports are better) with several Gigabit RJ45/SFP ports. And the switch must support VLAN and STP/RSTP. Any suggestions?”

– ”Looking for a layer2/layer3 10GbE switch with 8-12 ports and in the US$2,500 range. By the way, I prefer SFP+ rather than copper 10GbE since all the cables I have got are SFP+ DACs.”

– “Help! Need a 12-port or 16-port 10GbE SFP+ switch with relatively cheap price. Any suggestion would be appreciated!”

From the three thread descriptions above, the common Gigabit Ethernet switch can no longer meet the needs of many people. To meet all the requirements mentioned above, several 10G switches are recommended below:

FS S5800-8TF12S 12-Port 10GbE SFP+ Switch

The S5800-8TF12S 12-port 10 GbE SFP+ switch provided by FS.COM can meet all the demands mentioned above. This switch is a high-performance Ethernet switch with several highlights. It offers 8 x 1GbE SFP/RJ45 combo ports and 12 x 10GbE uplink ports in a compact 1RU form factor, which is ideal for hyper-converged infrastructure. In addition, this 10G switch supports both L2 and L3 packet processing. It has very low system power consumption of 65W at most.

FS S5800-8TF12S 12-Port 10GbE SFP+ Switch

D-link DXS-1210-12SC 10GbE SFP+ Switch

D-link DXS-1210-12SC is also a 12-port 10G switch. However, it can not meet all the demands mentioned from the three threads. This 10GB SFP+ switch only has 2 x 10GBASE-T/SFP+ combo ports. While, it has 10 x 10-Gigabit SFP+ Ports. It supports auto surveillance VLAN, L2 and L3 packet processing as well.

Mellanox SX1012X 10GbE SFP+ Switch

Mellanox SX1012X is an ideal 10GbE ToR switch with 12 ports. It is a high-performance small-scale switch in a half-width 1U form factor. It has 12 QSFP+ ports for uplink connection. If you buy this switch, you have to buy the corresponding DACs and optical modules together since it does not have other port for simple copper connection.

Netgear XS712T 10GbE SFP+ Switch

The Netgear XS712T is a 12-port 10-Gigabit copper smart switch with 10 dedicated 10GBase-T copper ports and 2 copper/SFP+ combo ports. The 10GBase-T copper ports can support 10G/1G/100M speeds and the combo ports are used for 10G connection. It is designed for SMB network with advanced L2+/Layer 3 lite features.

FS S5800-8TF12S vs D-link DXS-1210-12SC vs Mellanox SX1012X vs Netgear XS712T

How to choose a proper 10GbE SFP+ Switch for your network? Look at the following chart to compare the four different 10Gb SFP+ switches mentioned above:

10GbE SFP+ Switch comparison

From the comparison chart, it is clear that the biggest differences between these 10GbE SFP+ switches are the port types and numbers they support. You can choose a switch according to your actual needs. Of course, the price is another big factor which may affect your decision.

Conclusion

For the four 10GbE SFP+ switches recommended above, you can choose from the ports and the functions you need. For example, if you need the switch for hyper-converged infrastructure with 12 x 10 Gbps SFP+ ports, the FS S5800-8TF12S is a better choice. By the way, this switch offers a competitive price of US$ 1,899.00.

Related Articles:

Different Applications for 10G SFP+ Cable

Choose 10GBASE-T Copper Over SFP+ for 10G Ethernet

FS S5850-32S2Q 10GbE 32-Port Switch With Two 40G QSFP+ Uplinks

Share

Network switch has become unprecedented important in today’s networking market for its rapid update in performance. In the meanwhile, network users tend to have more requirements on a single switch, such as more port numbers, bigger switching capacity, higher bandwidth, etc. Here, we will introduce FS S5850-32S2Q 10GbE 32-port switch featuring all these requirements.

FS S5850-32S2Q 10GbE 32-Port Switch Overview

FS S5850-32S2Q 10GbE 32-Port Switch Ports

The S5850-32S2Q switch has 32 ports for 10Gb SFP+ connection and 2 ports for 40G QSFP+ Uplinks. That is to say, it has a non-blocking bandwidth of up to 400Gbps. In addition, It offers a switch fabric capacity of up to 800Gbps and forwarding rate up to 596Mpps.

FS S5850-32S2Q 10GbE 32-Port Switch
FS S5850-32S2Q 10GbE 32-Port Switch Key Features

The key features of this 32-port switch lie in that it provides high-performance, high interface density, and low latency to facilitate the rapid service deployment. The detailed key features are listed below:

  • Supports advanced data center features including MLAG, VXLAN, IPv4/IPv6, SFLOW, SNMP, Priority Flow Control (PFC) and data center TCP.
  • Provides L2 and L3 network service.
  • Supports a complete set of security features like IEEE 802.1x, DHCP Snooping and L2/L3/L4 multi-layer ACLs (Access Control Lists).
  • In case of an Ethernet ring network failure, the backup link will quickly recover the communication between the ring network nodes.
FS S5850-32S2Q 10GbE 32-Port Switch Main Uses

The two main uses of this 32-port switch lie in that it is not only an aggregation or access switch in Metro L2 ring network but also a leaf switch in enterprise data center.

1)Metro L2 Ring Network Application:

Ring network, also known as ring topology, is one of the network topologies in which each node is exactly connected to two other nodes. Therefore, it can form a ring-like pathway by transmitting signals through each node. The ring network reduces chances of data collision since each node releases a data packet after receiving the token. The picture below shows FS S5850-32S2Q switches for Metro L2 ring network topology as aggregation or access devices. These aggregation switches mainly use QinQ or ERPS features to deliver Metro Ethernet service.

S5850-32S2Q 10GbE 32-Port Switch in ring network

2)Enterprise Data Center Network Application

The S5850-32S2Q 10GbE 32-port switch can provide access ports for high density 10GE servers and 40GE uplink ports to aggregation or core switches as well. It can be used as leaf switch in data center access network topology with features such as VLAN, LACP, RSTP&MSTP, MLAG, DCB, etc.

32-port-switch-as-leaf-switch

FS S5850-32S2Q Buyer’s Guide

In addition to the information mentioned above, there are other specifications you need to know about FS S5850-32S2Q when choosing a 32-port switch. Listed below are the most important specifications for reference before buying this 10GB switch.

S5850-32S2Q-10GbE-32-port-switch-specifications

Conclusion

All in all, it is clear that the FS S5850-32S2Q 10GbE 32-port switch supports comprehensive protocols and applications. It plays an important role in data centers, Metro, enterprise network, campus network, etc. This 10GB switch is ideal to facilitate the rapid service deployment in both traditional L2 or L3 networks. You can enjoy a non-blocking bandwidth of up to 400Gbps! By the way, if you want an additional Gigabit switch for other use, FS offers multiple choices for you as well.

Related Articles:

What Is Link Aggregation and Link Aggregation Switch?

10GbE 32-Port Switch Application and Configuration

FS 24-Port Managed Switch With Both Fanless & Stackable Features

Share

From an application point of view, the current market demand for products is becoming more and more multi-functional. For example, different industries have different functional requirements for network switches, especially for the currently popular 24-port managed switch. You may often see the questions on Reddit seeking for help like the situations below:

– “I am looking for a quiet or fanless switch to install in my office. It is better to have at least 24 ports and support SFP+ uplinks. Any suggestions on where to buy one?”

– “Looking for a 24-port stackable switch for home lab. It would be nice if it could support 10G interconnection. Any advice would be appreciated!”

It seems that a 24-port fanless switch or stackable switch is a popular trend for network construction. Then, can I own a 24-port managed switch with both the characteristics of these two switches? Yes, FS S3900-24T4S 24-port managed switch can meet your needs.

FS S3900-24T4S 24-Port Managed Switch Meets All Your Needs

Key Features: Fanless & Stackable in Design

The key features of FS S3900-24T4S 24-port managed switch are that it is not only a fanless switch but also a stackable switch.

The fanless design of S3900-24T4S ensures noiseless operation and increases the reliability and energy efficiency of the system. And the stackable feature of S3900-24T4S simplifies network administration. Whether it operates alone or “stacked” with other units, there is always just a single management interface for the network administrator to deal with. This simplifies the setup and operation of the network. The S3900-24T4S 24-port managed switch is almost an omnipotent switch for choice under many circumstances.

S3900-24T4S 24-port managed switch

In addition to the two main features mentioned above, this 24-port managed switch has other significant features.

Specification of S3900-24T4S 24-Port Managed Switch
S3900-24T4S-specification

How to Install and Use FS S3900-24T4S 24-Port Managed Switch?

Installation Tips:
  • Temperature: Check if the operation temperature is within the specified operating temperature range. Make sure to keep a sound air flow of the rack environment.
  • Avoid additional weight: Do not place any other device or equipment on this switch.
  • Grounding: Keep this switch well grounded.

Note: If you want to mount this switch on a rack, pay attention to the circuit capacity as well. Check whether the circuit will be overload or not before installing S3900-24T4S on the rack. If the circuit can not bear the load of the switch, do not install it at your own will.

How to Use S3900-24T4S 24-Port Managed Switch:

For copper connection: You can use Cat5 cable for 10/100Base-T connection and use Cat5e, Cat6, Cat6a or above to reach 1000Base-T connection.

For fiber connection: Since the S3900-24T4S 24-port managed switch has four 10G SFP+ ports, you can use a variety of 10G optical transceivers and cables to connect with other network devices. The supported transceivers include 10G SFP+, BiDi SFP+, CWDM SFP+, DWDM SFP+, 10GBASE-T SFP+, etc. While the supported cables could be 10G DAC cable and AOC cable. In addition, this switch allows backwards compatibility on 1G SFP. All third-party modules and DAC/AOC cables can be used on the SFP+ ports of this switch, which can save a lot of deployment costs.

For stacking:  The following video will guide you on how to stack FS S3900-24T4S switches step by step.

Conclusion

From all the above, you may have a general understanding of FS S3900-24T4S 24-port managed switch. Endowed with so many powerful features such as fanless and stackable design, this switch offers unique advantages over many switches in the market. If you want a switch with both fanless and stackable features, FS S3900-24T4S is a priority choice!

Related Articles:

What Is Link Aggregation and Link Aggregation Switch?

What Is Layer 3 Switch?

Share

Layer 3 switch has roused much attention with the quick renovation of the network upgrade. It plays an important role in data exchange inside a large local area network. Then, what is layer 3 switch? Read this post to learn more about layer 3 switch involved with the comparison of layer 3 switch vs layer 2 and layer 3 switch vs router.

What Is Layer 3 Switch and Layer 3 Switching?

What is layer 3 switch? Simply to say, a layer 3 switch is a network switch with some router functions. The most important purpose of the layer 3 switch is to speed up the data exchange within a large LAN. The routing function is also used for this purpose. It can accomplish one route and multiple packet forwarding processes.

what is layer 3 switch

Regular processes such as packet forwarding are implemented by hardware at high speed, while functions such as routing information update, routing table maintenance, route calculation, and route determination are implemented by software. Layer 3 switching technology is layer 2 switching technology combining with layer 3 forwarding technology. The traditional switching technology is operated in the second layer of the OSI network standard model (the data link layer), and the third layer switching technology implements the high-speed forwarding of data packets in the third layer of the network model. It not only realizes the network routing function but also achieves optimal network performance according to different network conditions.

Layer 3 Switch vs Layer 2

Why Is Layer 3 Switch Popular?

Normally, for the sake of safety and management with convenience, a LAN is divided into small LANs according to different factors such as function or geography to reduce the harm of broadcast storms. Therefore, VLAN technology is applied in a large number of networks. However, communication between different VLANs must be forwarded through routers. Such inter-network access is limited because of the limited number of ports and the slower routing speed. Based on this situation, a three-layer switch emerges. The layer 3 switch is designed for IP. The interface type is simple and has strong layer 2 packet processing capability. It is very suitable for data routing and switching in large LANs. In the third layer of the protocol, the function of the traditional router is replaced or partially completed, and at the same time it has almost the speed of the second layer exchange, and the price is relatively cheaper.

Advantages of Layer 3 Switch

From the paragraph above, you may have a blurry concept when it comes to layer 3 switch vs layer 2. Don’t worry. Here are the main advantages of layer 3 switch when comparing layer 3 switch vs layer 2:

  • Function: A layer 2 switch can only switch packets from one port to another, whereas a layer 3 switch is capable of both switching as well as routing.
  • MAC vs. IP Address: Layer 2 switches use devices’ MAC addresses to redirect data packets from source port to destination port. While, layer 3 switches use IP addresses to link various subnets together utilizing special routing protocols.
  • Applications: Layer 2 switch is hardware-based switch and uses ASICs (application specific integrated circuits) to maintain MAC address table. It uses layer 2 switching to break up a large domain into multiple smaller domains. Layer 3 switch is a mix of switch and router, which is commonly used for routing within virtual LANs (VLANs).
  • Speed: Normally, switches operating at layer 2 take less time than that operating at layer 3. Layer 2 switches just need to assign MAC addresses to reroute packets from source port to destination port in layer 2 switching.

Layer 3 Switch vs Router

In addition to layer 2 switch, router is another concept which is usually referred to when concerned with layer 3 switch. This is obvious to find from layer 3 switch definition. Then, what are their differences when comparing layer 3 switch vs router? Look at the following aspects:

  • Main function: The main function of a router is the routing function. The same is true for layer 3 switch as well. It is still a switch product but with some basic routing functions. Its main function is still data exchange.
  • Main applicable environment: The routing function of a layer 3 switch is usually relatively simple, because it is mainly a simple LAN connection. The router is designed mainly to meet different types of network connections including LANs and WANs. Its main function is routing and forwarding.
  • Differ in performance: Technically, routers and layer 3 switches have significant differences in packet switching operations. Routers typically perform packet switching by a microprocessor-based software routing engine, while layer 3 switches perform packet switching through hardware.

Conclusion

After all the above, you may get clearer about “what is layer 3 switch” and the main difference between layer 3 switch vs layer 2 and layer 3 switch vs router. In short, a layer 3 switch can implement both switching as well as routing function. It can define a plurality of ports as one virtual network, and it has no limit to the transmission bandwidth between networks.

What Is an Ethernet Switch and How to Use It?

Share

Nowadays, Ethernet switch has become an important part in data center or computer networking to meet different needs. You may heard about it but not so familiar with it. Then, what is an Ethernet switch? How does an Ethernet switch work? Let’s find out the answers in the following text.

what is an ethernet switch

What Is an Ethernet Switch?

Ethernet switch, the most common form of network switch, is a computer networking device used in Ethernet to connect various Ethernet devices. It connects devices together by using packet switching to receive, process, and forward data from one source device to another destination device.

Ethernet Switch Types

There are various types of Ethernet switches designed for different needs. Normally, they are divided into two main categories, namely, modular switch and fixed configuration switch. The former one allows you to add expansion modules into the switch as needed while the latter one is not expandable with a fixed number of ports.

Nowadays, fixed configuration switches are the mostly used. They can come in various different speeds with particular names such as fast Ethernet switch with a speed of 10/100 Mbps, Gigabit Ethernet switch of 10/100/1000 Mbps, 10GbE switch of 10/100/1000/10000 Mbps. Currently, Gigabit Ethernet switch is still the most common one and is the most widely used switch among its kind. In additional, 10GbE switch is also very popular for its higher transmission speed of up to 10 Gbps and a relatively not expensive price. Of course, there are other switches of 25G, 40G or even 100G for you to choose as well. You can choose the best Ethernet switch according to your actual needs.

How Does An Ethernet Switch Work?

As a hardware device, Ethernet switch centralizes communications among multiple connected Ethernet devices in one local area network (LAN). Normally, multiple data cables are plugged into an Ethernet switch to enable communication between different networked devices. Then, the Ethernet Switch manages the flow of data across the network by transmitting a received network packet only to the one or more devices for which the packet is intended. An Ethernet switch can identify every device connected to it and direct the traffic flow of the device, which maximizes the security and efficiency of the network. Therefore, it is more intelligent and efficient than an Ethernet hub which is unable to distinguish different recipients.

how-does-an-ethernet-switch-work

How to Choose and Use an Ethernet Switch?

How to Choose an Ethernet Switch?

As for how to choose an Ethernet switch, there are different factors you should consider:

  • Transmission speed: Although there are different transmission speeds for you to choose, you still need to use an Ethernet switch according to the actual speed you need.
  • Number of ports: Fixed configuration switches typically come in 5, 8, 10, 16, 24, 28, 48, and 54-port configurations. You should choose a switch with the number of ports equal to, or greater than that of computers you are connecting.
  • Network infrastructure: For small network of up to 50 users, one Ethernet switch might enough. While, additional switches are needed if more users are added in.
  • Specific feature: If you have special requirements for your switch, you can search it accurately. For example, you can only search managed or unmanaged switch for precise localization among various switches.
  • Reliable vendor: There are many popular brands of networking equipment, such as Cisco, 3com, Linksys, FS, etc. Just choose a company you trust and buy the switch you want.
  • Price difference: Normally, price might be the priority over everything when choosing a product. You can search a certain switch of the same external conditions and then compare them in price. If the functions are nearly the same, you can choose a relatively cheaper one.
How to Use an Ethernet Switch?

Speaking of how to use an Ethernet switch, you can follow the guidance below:

  • Configure your switch: Set up the IP address for the switch with switch manual.
  • Configure your switch with right VLANs setup if needed. If multiple VLANs are being used, make sure the computers are on the correct VLAN.
  • Log into your switch to hard code each port if necessary.

For more details, you can refer to the post of how to use a network switch.

Conclusion

After the introduction of “What is an Ethernet switch?” and “How does an Ethernet switch work?” above, one can have a general understanding of an Ethernet switch. In short, An Ethernet switch is a telecommunication device used to connect multiple computers or devices together and can expand network with ease.

Related articles:

Switch Mac Address: What’s It and How Does it Work?

Network Switch vs Network Router vs Network Firewall

Understanding Network Latency in Ethernet Switches

GUI vs CLI: Which for Managing Network Switch?

Share

Network switch is the major building block of many business networks, as they connect multiple PCs, printers, access points, servers, and other hardware to make your business up and running. Switches enables you to send and receive information and access shared resources in a smooth, efficient and highly secure way. It happens at some points we need to make settings or adjustments on switches to perform certain function, like configuring VLAN or check status of switch ports. So how to get the configuration access to a network switch? Does GUI or CLI work better for you? What’s the difference between GUI vs CLI? We’ll address these issues and guide you to manage switch via GUI and CLI.

gui vs cli for configuring network switch

What Is GUI (Graphical User Interface)?

GUI is short for Graphical User Interface – it uses graphics like windows, scrollbars, buttons, etc. to allow users to communicate with the data switch or GUI operating system. It facilitate users, especially novice users in an intuitive and easy-to-learn way. GUI access need recognition and good exploratory analysis and graphics, which is more suitable for users who requires no access to advanced tasks.

what is command line cli

What Is CLI (Command Line Interface)?

CLI stands for Command Line Interface, which allows users to write commands in a terminal or console window to communicate with an operating system. CLI acts as the medium between operators and the network switch: Users have to type command to perform a task. CLI is more accurate than GUI, but it has a very steep learning curve. CLI is appropriate for users who uses it in a regular basis, or for the costly computing where input precision is the priority.

what is gui graphical user interface

GUI vs CLI: What Is the Difference?

GUI vs CLI, both as the mainstream interface for accessing network switch, differs in the following aspects:

Ease of Use: CLI enable users to type manual command in order to perform the desired task whereas in GUI users provided visuals to communicate with the data switch. So the beginners will pick up a GUI much faster than a CLI.

Control: With a GUI, there’s control over files and the operating system – but advanced tasks may still need CLI. While CLI enables all the control over file system and operating system, making tasks simple.

Speed: In GUI, using the mouse and the keyboard to control is slower than using the command line. With CLI, the operator simply use the keyboard and may need to execute only few commands to complete the task.

Hacking: In terms of hacking, all the vulnerability exploits are done from command line. All the remote access and file manipulation are done from the command line.

Scripting: CLI excels in this field since it allows you to create a script that contains few lines of command and it will do the work for you.

Here we use the chart to summarize GUI vs CLI differences.

BASIS FOR COMPARISON
CLI
GUI
Basic
Command line interface enables a user to communicate with the system through commands.
Graphical User interface permits a user to interact with the system by using graphics which includes images, icons, etc.
Device used
Keyboard
Mouse and keyboard
Ease of performing tasks
Hard to perform an operation and require expertise.
Easy to perform tasks and does not require expertise.
Precision
High
Low
Flexibility
Intransigent
More flexible
Memory consumption
Low
High
Appearance
Can’t be changed
Custom changes can be employed
Speed
Fast
Slow
Integration and extensibility
Scope of potential improvements
Bounded

GUI vs CLI: How to Use Them to Manage Network Switch?

CLI and GUI are different kinds of user interfaces with their own merits and drawbacks. It is important to understand where each one excels so you can pick the right tool. Using the defining features of two different tools provides the best of both worlds. The following video, using FS S5850-32S2Q 10GbE switch as an example, offers a complete guide on how to use command line and GUI to access a network switch, through which you may figure out which one fits better for you.

Conclusion

In all, the GUI provides a higher degree of multitasking and more efficiency, whereas CLI offers more control, precision and repeatability. The decision on choosing GUI vs CLI to configure the network switch should better based on user requirements. FS.COM offers a comprehensive product line of network switches, including Gigabit Ethernet switch, Gigabit PoE switch, etc. If you are seeking network switch configuration or management solutions, feel free to contact us at sales@fas.com.