Author Archives: Alice.Gui

How to Convert a Port From QSFP+ to SFP+?

Share

As data communications technology migrates from 10GbE to 40GbE and beyond, it is often necessary to connect 40GbE equipment with existing 10GbE equipment. As we know 40GbE NIC or switch usually equipped with QSFP+ ports, and 10GbE switch usually equipped with SFP+ ports. That is to say we must know how to convert a QSFP+ port to a SFP+ port. At present, there exists three ways to solve this problem. I will explain it in this blog.

QSFP+ to SFP+ Cable
As shown in the figure below, a QSFP+ to SFP+ cable consists of a QSFP+ transceiver on one end and four SFP+ transceivers on the other end. The QSFP+ transceiver connects directly into the QSFP+ access port on the switch. The cables use high-performance integrated duplex serial data links for bidirectional communication on four links simultaneously. The SFP+ links are designed for data rates up to 10 Gbps each. QSFP+ cable is available in passive and active two types. Passive QSFP+ cable has no signal amplification built into the cable assembly, therefore, their transmission distance is usually shorter than an active one.

qsfp-cable

CVR-QSFP-SFP10G: QSFP+ to SFP+ Adapter (QSA)
You can convert a QSFP+ port to a SFP+ port using the QSFP+ to SFP+ adapter. QSA provides smooth connectivity between devices that use 40G QSFP+ ports and 10G SFP+ ports. Using this adapter, you can effectively use a QSFP+ module to connect to a lower-end switch or server that uses a SFP+ based module. This adapter is very easy to use. As shown in the figure below, just plug one side of the QSA in your QSFP+ port, and plug a SFP+ module into another side of the QSA. Then you can convert a QSFP+ port to a SFP+ port easily.

qsfp-to-sfp-adapter-qsa

QSFP+ Breakout Cable
As we know, parallel 40GBASE-SR4 QSFP+ modules use 8 out of 12 MPO/MTP interface fibers transmitting 4 x duplex (DX) channels (4 x transmit and 4 x receive). The QSFP+ breakout cable uses a pinless MTP connector on one end for interfacing with the QSFP port on the switch. The other end contains 4 duplex LC connectors, which provide connectivity to the SFP+ ports on the switch. Thus higher-speed equipment (40G QSFP+) can be connected to slower-speed equipment (10G SFP+) successfully.

QSFP+ Breakout Cable convert qsfp+ to sfp+

Conclusion
When you want to connect a QSFP+ port to a SFP+ port, you can use QSFP+ to SFP+ cable, QSFP+ to SFP+ adapter or QSFP+ breakout cable. All these three options can meet your needs. FS.COM provides a full range of compatible QSFP+ cable, which can be 100% compatible with your Cisco, Juniper, Arista and Brocade switches and routers. Or you want to use QSFP+ breakout cable, you can also find it in our Fiberstore.

Related Article: 10G SFP+ and 40G QSFP+ Transceivers Cabling Solutions

Considerations for Buying Compatible Optical Transceiver

Share

When choosing compatible optical transceiver, nearly 90% of transceiver end users may worry about their quality and compatibility. As we know, the price of compatible optical module is usually much lower than original-brand transceiver. So, can compatible optical transceiver really perform well as the original one? What should I pay attention to when buying compatible optical module? This blog will give you some practical advice aimed to help you choose compatible optical transceiver with high compatibility and low cost.

Main Concerns for Buying Compatible Optical Transceiver

  • Compatibility – The transceiver can’t be compatible with your original-brand switch.
  • Life Span – The quality of the transceiver is not reliable and the service life is short.
  • Poor performance – High latency etc.
  • Others – Refurbished modules, power consumption etc.

Compatible Optical Transceiver

How to Ensure Quality of Compatible Optical Transceiver?

1. Professional Testing Process

Make sure the compatible optical transceiver you buy is tested on relevant original-brand switch. For example, when you buy a Cisco compatible optical transceiver, make sure it’s tested on Cisco switches. Usually, the compatible optical transceiver that has been tested can always guarantee perfect performance in your network.

2. Guaranteed Warranty Policy

The shopping experience tells us that bad quality products usually have short-term warranties. If there’s something wrong with your products, the vendor won’t give you any maintenance and return service. Instead, if the warranty time is long such as lifetime warranty, the products’ quality may be more reliable and stable.

3. Reputable Brand Vendor

With strict quality control system and OEM experience for many years, reputable brand vendors can usually guarantee a reliable and stable connectivity for your high-speed fiber transmission system. All the raw materials they used are safe and the performance can be comparable with the original.

Reliable Compatible Optical Transceiver Structure Details

Besides the considerations mentioned above, knowing the structure details requirement of a good compatible optical transceiver may also help you a lot.

1. Premium Metal Housing

A good transceiver module is made of premium pluggable hard gold plating, which can ensure repeated plugging and unplugging. In addition, by strict control of the gold plating thickness, it can reach a superior quality and ensure excellent connection as well as reducing the working temperature.

premium-metal-housing

2. High-Quality Laser

The high-quality laser is with high sensitivity, low attenuation and high quality which ensure the perfect signal transmitting and receiving.

high-quality-laser

3. Advanced Chip

The advanced chip offers the high performance and low power consumption to the module solution which ensures the signal to be transmitted with high speed and stable performance.

advanced-chip

4. Perfect Combination

The combination of the gold-finger (conductive metal), chip and metal housing makes a perfect transceiver module.

perfect-combination

Conclusion

When you’re looking to upgrade your network, it makes sense to choose a compatible optical transceiver to help save cost. FS.COM, a professional manufacturer and supplier of compatible optical transceiver, may be your ideal choice. Each transceiver module from FS.COM is tested on the real working environment before shipping which ensures the reliable and stable performance. Besides, FS.COM offers a 60-day money-back return policy and a guaranteed warranty policy to ensure their transceivers’ quality. If you try to use them, you may like them.

Related Article: All About Compatibility: Third-Party vs. Brand Optics

Wireless Access Point vs Router–Which One Is Right for You?

Share

Nowadays wireless networks are almost at every home. And surely you hear people around talking about the wireless equipment from time to time. Among, wireless router is the most familiar one in our lives. However, we’ve heard more and more about the word “wireless access point” or “AP” recently. What’s the wireless AP? Is it the same as the wireless router? What’s the difference between them? Wireless access point vs router: the difference between them will be introduced in this blog.

What Is a Router?
Most anyone who has an Internet connection has a router. A router is a device that routes packets between different networks. A typical consumer router is a wireless router and it has two network interfaces: LAN (including WLAN) and WAN. It serves to connect a local area network (LAN) to a wide area network – Internet (WAN). That is to say if we want to connect to Internet, we must use a router. Routers on the other hand can manage an entire home or small business giving network capability to many computers and devices simultaneously, either wired or wirelessly (when wireless router used).

wireless-router

What Is a Wireless Access Point?
As for wireless access point (AP), it’s commonly wire connected to Ethernet network’s router, hub or switch and then to create a simple wireless network. This was done by using a Ethernet cable to connect a switch and a AP and the AP would then communicate with WiFi devices and giving them network access. Wireless access point does not route anything. It just converts an existing wired network (LAN) into a wireless one (WLAN). A router can be a access point but a access point can’t be a router.

wireless-access-point

Wireless Access Point vs Router: Which One should I Buy?
Before routers became standard with built in WiFi, we must use a wireless AP to connect wireless devices to our network. However, now that most any router has built in WiFi and plays many roles including being a AP, many don’t use dedicated AP as they have in the past. Then wireless routers are common place in any network today but often there are weak WiFi signals or dead spots in any network. A wireless access point can be added in locations that have bad wireless network ability help with WiFi dead spots and extending a wireless network.

Wireless Access Point vs Router

Conclusion
In conclusion, access point vs router: if you want build more reliable wireless network, you may need a wireless access point. If you just want wireless network at home to cover only several people, the wireless router is enough. Today’s wireless AP is widely used in business and larger hotspot WLANs to cover a bigger area or to support hundreds of users. In larger WLANs, it usually makes sense to have several APs feeding into a single, separate router. FS.COM provides several wireless access points with high performance to support resilient wireless access services for use in enterprise offices, schools, hospitals, hotels and more.

wireless-access-point-ap

Related Article: PoE Switch VS. PoE+ Switch, Which Will You Choose?
Related Article: Network Switch, Router & Firewall—Why Need All Three?

5 Concepts Help Easily Get WDM System

Share

The Wavelength Division Multiplexing (WDM) system is a passive, optical solution for increasing the flexibility and capacity of existing fiber lines in high-speed networks. By adding more channels onto available fibers, the WDM System enables greater versatility for data communications in ring, point-to-point, and multi-point topologies for both enterprise and metro applications. Do you know about WDM system? 5 concepts provided in this blog may help you easily get it.

Optical Transmission
Optical transmission is the conversion of a digital stream of information to light pulses. The light pulses are generated by a laser source (LED or vessel) and transmitted over an optical fiber. The receiver converts the light pulses back to digital information.

Optical Transmission

Wavelength Division Multiplexing
WDM is based on the fact that optical fibers can carry more than one wavelength at the same time. The lasers are transmitting the light pulses at different wavelengths that are combined via filters to one single output fiber. The device used to combine wavelengths is called multiplexer and the device used to separate wavelengths is called demultiplexer, which are the two most basic component in WDM system.

Wavelength Division Multiplexing

Optical Amplifiers
An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. Optical amplifiers boosts the attenuated wavelengths and are more cost efficient than electrical repeaters. Without amplifiers the reach is limited to 80-100km before electrical regeneration. Amplifier stations typically each 80-100km.

optical-amplifiers
Depending on signal types and fiber characteristics, amplifiers are used in DWDM networks and increases the reach of the optical signals up to 3000 km. Amplifiers are an basic building block for a powerful DWDM network.

Optical Amplifiers

Transponder
Transponders provides wavelength conversion from client to WDM signal. A transponder maps a single client to a single WDM wavelength. The digital framing of a line signal from a transponder provides service monitoring, management connectivity and increased reach. The broad range of available transponders enables cost efficient solutions for both CWDM & DWDM.

transponder

Optical Add Drop Multiplexer
The main function of an optical multiplexer is to couple two or more wavelengths into the same fiber. If a demultiplexer is placed and properly aligned back-to-back with a multiplexer, it is clear that in the area between them, two individual wavelengths exist. This presents an opportunity for an enhanced function, one in which individual wavelengths could be removed and also inserted. Such a function would be called an Optical Add Drop Multiplexer (OADM). OADM is used for increased flexibility in the optical paths. Services can be redirected upon failure or capacity constraints and capacity can be increased dynamically per node.

optical-add-drop-multiplexer

Conclusion
Multiplexer and demultiplexer are the most basic component in WDM system. If your transmission distance is more than 100 km, an optical amplifier is necessary. If your client wavelength isn’t available for WDM applications, you may need a transponder to convert it to WDM available wavelength. Want to achieve a more flexible, just choose to use a OADM. Besides these, sometimes, a dispersion compensation module is also needed to fix the form of optical signals that are deformed by chromatic dispersion and compensates for chromatic dispersion in fiber that causes the light pulses to spread and generate signal impairment. Do you get WDM system? Just start to build your own WDM system now!

Difference of Straight Through and Crossover Cable

Share

Ethernet cables can be wired as straight through or crossover. The straight through is the most common type and is used to connect computers to hubs or switches. They are most likely what you will find when you go to your local computer store and buy a patch cable. Crossover Ethernet cable is more commonly used to connect a computer to a computer and may be a little harder to find since they aren’t used nearly as much as straight through Ethernet cable. Then, what’s the difference between straight through vs crossover cable? Read through this post to find the answer.

T568A And T568B Wiring Standard Basis
A RJ45 connector is a modular 8 position, 8 pin connector used for terminating Cat5e patch cable or Cat6 cable. A pinout is a specific arrangement of wires that dictate how the connector is terminated. There are two standards recognized by ANSI, TIA and EIA for wiring Ethernet cables. The first is the T568A wiring standard and the second is T568B. T568B has surpassed 568A and is seen as the default wiring scheme for twisted pair structured cabling. If you are unsure of which to use, choose 568B.

t568a-t568b-wiring-standard

Straight Through vs Crossover Cable

What Is Straight Through Cable?

A straight through cable is a type of twisted pair cable that is used in local area networks to connect a computer to a network hub such as a router. This type of cable is also sometimes called a patch cable and is an alternative to wireless connections where one or more computers access a router through a wireless signal. On a straight through cable, the wired pins match. Straight through cable use one wiring standard: both ends use T568A wiring standard or both ends use T568B wiring standard. The following figure shows a straight through cable of which both ends are wired as the T568B standard.

straight-through-cable

What Is Crossover Cable?
A crossover Ethernet cable is a type of Ethernet cable used to connect computing devices together directly. Unlike straight through cable, the RJ45 crossover cable uses two different wiring standards: one end uses the T568A wiring standard, and the other end uses the T568B wiring standard. The internal wiring of Ethernet crossover cables reverses the transmit and receive signals. It is most often used to connect two devices of the same type: e.g. two computers (via network interface controller) or two switches to each other.

crossover cable

Straight Through vs Crossover Cable, which to choose?
Straight through vs crossover cable, which one should I choose? Usually, straight through cables are primarily used for connecting unlike devices. And crossover cables are use for connecting alike devices.
Use straight through Ethernet cable for the following cabling:

  • Switch to router
  • Switch to PC or server
  • Hub to PC or server

Use crossover cables for the following cabling:

  • Switch to switch
  • Switch to hub
  • Hub to hub
  • Router to router
  • Router Ethernet port to PC NIC
  • PC to PC

Straight Through vs Crossover Cable

Conclusion on Straight Through vs Crossover Cable

Straight through and crossover cables are wired differently from each other. One easy way to tell what you have is to look at the order of the colored wires inside the RJ45 connector. If the order of the wires is the same on both ends, then you have a straight through cable. If not, then it’s most likely a crossover cable or was wired wrong. At present, the straight through cable is much more popular than crossover cable and is widely used by people. FS.COM provides a full range straight through Cat5e, Cat6, Cat6a and Cat7 Ethernet cables with many lengths and colors options. Look for Ethernet patch cables, just come to FS.COM!

Related Articles:
Ethernet Cable Types – Cat5e, Cat6, Cat6a, and Cat7
Patch Cable vs. Crossover Cable: What Is the Difference?
Quick View of Ethernet Cables Cat5, Cat5e And Cat6

Knowledge of SFP-10G-SR Compatibility and Price

Share

SFP-10G-SR is a Cisco multimode 10G transceiver. It supports up to 400m link length when uses 4700Mhz KM OM4 multimode fiber (MMF ). Usually, it was used in a switch SFP slot and support on a wide range of Cisco switches and routers. In the market, the SFP-10G-SR price is various, from $ 10 to $ 800. Which one should I choose? Knowledge of SFP-10G-SR compatibility and price will be provided in this blog.

Cisco SFP-10G-SR Introduction

The SFP-10G-SR is a Cisco 10G SFP+ transceiver module. It supports bi-directional, serial-optical data transfers across fiber optic networks. It is equipped with two connectors: a SFP+ male edge connector that plugs into the switch’s SFP+ port, and a duplex LC female connector for the fiber optic patch cable. Since it is hot-pluggable compliant, the Cisco SFP-10G-SR transceiver can be plugged directly into any Cisco SFP+ based transceiver port, without the need to power down the host network system. This capability makes moves, adds, and changes quick and painless.

sfp-10g-sr-price

Knowledge of SFP-10G-SR Compatibility

When you buy SFP-10G-SR transceivers for your switch, you are told to buy “brand” SFP-10G-SR from your network equipment manufacturer in order to keep your system running properly and safely. The “brand” SFP-10G-SR compatibility may never have any issues and the price is therefore very high, usually several hundred dollars. But since the transceivers are all manufactured based on MSA (Multi-source Agreement), which strictly define the operating characteristics of optical transceivers so that system vendors may implement ports in their devices that allow MSA compliant transceivers produced by name brand, as well a third party vendors, to function properly. Transceivers that manufactured by third party vendors usually called compatible transceivers, such as compatible Cisco SFP-10G-SR transceivers. Usually, these compatible transceivers are tested on the corresponding switch before selling, therefore, the compatibility can also be ensured. Cisco SFP-10G-SR matrix can be found here.

SFP-10G-SR Compatibility

SFP-10G-SR Price Comparison

Since equipment SFP-10G-SR vendors all rely on MSAs when designing their transceivers, every supplier can produce the transceiver modules with the same functions. For this reason, there are many module suppliers from which customers can choose freely. As we all know, freedom of choice is the foundation of the efficient operation of markets. In order to gain a bigger share of the market, those vendors may act as efficiently as possible, which may drive down costs and offer cheaper transceivers to customers. Following table gives a SFP-10G-SR price comparison based on several popular transceivers vendors for your reference.

Vendor Brand MODEL/MFG. PART SFP-10G-SR Price
CDW Cisco SFP-10G-SR $691.99
Router-Switch Cisco SFP-10G-SR $262.00
FluxLight FluxLight SFP-10G-SR $54.00
10Gtek 10Gtek SFP-10G-SR $18.88
 Fiberstore Fiberstore SFP-10G-SR $16.00

Conclusion

From the table above, we can see that the SFP-10G-SR price of the Fiberstore is the cheapest. We offer the exact same SFP-10G-SR transceiver as Cisco, but at a much lower price! Just compare the cost of buying a brand name Cisco SFP-10G-SR from one of our competitors to the price of purchasing the same transceiver from Fiberstore, or another third-party supplier. Besides, all optical transceivers from Fiberstore are tested in our test assured program before selling, so the 100% compatibility can be ensured. When you purchase a SFP-10G-SR transceiver from Fiberstore you’ll not only get the best price but also get the best quality and compatibility.

sfp-10g-sr-compatibility

Related Article:
Cisco SFP-10G-SR: All You Need to Know
SFP-10G-SR-S vs SFP-10G-SR, Why Choose One Over the Other?

Tight-Buffered Distribution Cable Basis

Share

Indoor/outdoor fiber optic cables include loose tube and tight buffer designs. These are available in a variety of configurations and jacket types to cover riser and plenum requirements for indoor cable and the ability to be run in duct, direct buried or aerial/lashed in the outside plant. Applications of tight-buffered distribution cable will be provided in this article. This blog provides information on tight-buffered distribution cable’s basic sense and its indoor and outdoor applications.

Construction of Tight-Buffered Distribution Cable
Standard tight-buffered distribution cable is available in fiber counts from 6 to 144 fibers. Distribution cable in 6, 12, and 24-fiber counts in a “single jacket” designs feature 900µm tight-buffered fibers surrounded by an aramid yarn strength member. Larger distribution cable (36 fibers and greater) features a “sub-unit” design that simplifies fiber identification, provides easy access and routing of the fibers and increases cable durability with a dielectric central strength member. For example, a 144-fiber cable usually has twelve 12-fiber sub-units while a 36-fiber cable could have six 6-fiber sub-units or three 12-fiber sub-units.

Tight-Buffered Distribution Cable Construction

900µm Buffer for Easy Fiber Termination
Tight-buffered distribution cable can be directly connected to optical equipment for the fibers normally have a 900µm buffer. Terminated fibers may be directly connected to equipment without use of a patch panel and accompanying jumper cables. Besides, no splices or splicing skills are needed, as with pigtails on loose tube gel-filled cables. In situations where the fibers will be mated and unmated frequently, or where there is general access to equipment, it is advisable to place terminated fibers in a patch panel to avoid damage to the connector/fiber interface.

900µm Buffer for Easy Fiber Termination

Plenum/Riser Tight-Buffered Distribution Cable for Indoor Applications
Fiber optic tight-buffered distribution cable is used within buildings to provide high-density connectivity and ease of installation. Applications include intra-building backbones, routing between telecommunications rooms and connectorized cables in riser and plenum environments. For trunking applications where fiber distribution cable is being run through environmental airflow spaces, we should plenum tight-buffered distribution cable. It is in compliance with NEC section 770.179(a) for installation in plenums and air ducts. In vertical runs, as shown in the figure below, we usually use riser tight-buffered distribution cable.

Plenum/Riser Tight-Buffered Distribution Cable

Armored LSZH Tight-Buffered Distribution Cable for Indoor/Outdoor Applications
Armored LSZH tight-buffered distribution cable features a double LSZH jackets with the outer jacket being of UV stabilised, water and moisture resistant. Between the 2 sheaths there is a corrugated steel tape making the cable rodent proof. The cable is suited for LAN backbones, direct burial, ducts, under floor or ceiling spaces.

4

Conclusion
The tight-buffered design provides a rugged cable structure to protect individual fibers during handling, routing and connectorization. Yarn strength members keep the tensile load away from the fiber. Multi-fiber, tight-buffered cables often are used for intra-building, risers, general building and plenum applications. FS.COM offers a wide range options on high-quality tight-buffered distribution cables which can meet your demands on indoor or indoor/outdoor applications. Same-day shipping from USA is available. For more information, please visit www.fs.com.

Related Article: Tight-Buffered Fiber Distribution Cable for Indoor and Outdoor Use

What’s the Difference Between HBA, NIC and CNA?

Share

HBA, NIC and CNA are three types of adapters used in computer networking systems. All perform to connect servers to switches, then what’s the difference between them? In this blog, knowledge of HBA, NIC and CNA will be provided.

HBA – Host Bus Adapter
Host bus adapter is a hardware device, such as a circuit board or integrated circuit adapter, that provides I/O processing and physical connectivity between a host system, such as a server, and a storage device. The HBA transmits data between the host device and the storage system in a SAN and relieves the host microprocessor of the tasks of storing data and retrieving data. The result of which is to improve server performance. HBAs are most commonly used in Fibre Channel (FC) SAN environments and are also used for connecting SCSI and SATA devices.

what is hba

NIC – Network Interface Card
Short for Network Interface Card, the NIC is also referred to as an Ethernet card and network adapter. It is an expansion card that enables a computer to connect to a network. Most new computers have either Ethernet capabilities integrated into the motherboard chipset or use an inexpensive dedicated Ethernet chip connected through the PCI or PCI Express bus. A separate NIC is generally no longer needed. If the card or controller is not integrated into the motherboard, it may be an integrated component in a router, printer interface, or USB device.

nic

CNA – Converged Network Adapter
A converged network adapter (CNA), also called a converged network interface controller (C-NIC), is a computer input/output device that combines the functionality of a host bus adapter (HBA) with a network interface controller (NIC). In other words, it “converges” access to, respectively, a storage area network and a general-purpose computer network. The CNA connects to the server via a PCI Express (PCIe) interface. The server sends both FC SAN and LAN and traffic to an Ethernet port on a converged switch using the Fiber Channel over Ethernet (FCoE) protocol for the FC SAN data and the Ethernet protocol for LAN data. The converged switch converts the FCoE traffic to FC and sends it to the FC SAN. The Ethernet traffic is sent directly to the LAN.

cna

What’s the Difference Between HBA, NIC and CNA?
In large enterprise companies, main servers usually have (at least) two adapters – FC HBA and Ethernet NIC to connect to the storage network (Fiber Channel) and computer network (Ethernet). CNAs converges the functionality of both the adapters into one.

hba-nic-and-cna
As you can see from the picture below, with the set up in the first diagram, two separate adapters are required on the server to connect to Ethernet-based Computer Network and FC based Storage Network respectively. But the setup in the second diagram requires just one adapter (Converged Network Adapter – CNA) which carries both Ethernet traffic as well as FCoE traffic in a single cable. This cable connects to one of the Ethernet ports in the Converged Switch that has both Ethernet as well as Fiber Channel ports. This Converged Switch converts the FCOE traffic into Fiber Channel traffic to be sent to the FC SAN over the Fiber Channel Network. The computer network traffic is directly sent to the LAN over the Ethernet Network.

Conclusion
Compared to use both HBA and NIC, using a single CNA to connect servers to storage and networks reduces costs by requiring fewer adapter cards, cables, switch ports, and PCIe slots. Besides, CNAs also reduce the complexity of administration because there is only one connection and cable to manage. To connect CNAs to your ToR or EoR switches can over both SFP+ SR (optical) or SFP+ direct attach copper cable. To connect CNAs to your servers can over Cat6 cables. All these cabling solutions can be provided in FS.COM. All at a low price and high quality!

Related Article: Are White Box Switches Equal to OEM Switches?

Related Article: What’s the Difference: Hub vs Switch vs Router

Compatible Cisco 2960 SFP for Cisco 2960 Series Switches

Share

Cisco Catalyst 2960 series switches are available in 2960, 2960-S, 2960-SF, 2960-X and many other types. The Cisco 2960-S and 2960-SF series are the newest members of the 2960 family that offer a rich set of Layer 2 features. The 2960-S provides Gigabit Ethernet (10/100/1000) connectivity with 10G/1G SFP+ uplinks, and the 2960-SF provides Fast Ethernet (10/100) connectivity with 1G SFP uplinks. This blog mainly introduced the knowledge of 2960-SF series switches and their compatible Cisco 2960 SFP modules.
Cisco 2960
Cisco Catalyst 2960-SF Series Switches Overview
Cisco Catalyst 2960-SF series switches deliver secure and reliable LAN access for branch and medium-sized campus deployments. They enable reliable and secure business operations and lower total cost of ownership through a range of innovative features including FlexStack, Power over Ethernet Plus (PoE+), and Cisco Catalyst SmartOperations. These series switches include 7 models. 5 models with LAN Base Software and 2 models with LAN Lite Software.

Cisco Catalyst 2960-SF Series Switches with LAN Base Software
Switch Model Description Uplinks Available PoE Power
2960S-F48FPS-L 48 Ethernet 10/100 ports with PoE+ 4 SFP 740W
2960S-F48LPS-L 48 Ethernet 10/100 ports with PoE+ 4 SFP 370W
2960S-F24PS-L 24 Ethernet 10/100 ports with PoE+ 2 SFP 370W
2960S-F48TS-L 48 Ethernet 10/100 ports 4 SFP
2960S-F24TS-L 24 Ethernet 10/100 ports 2 SFP
Cisco Catalyst 2960-SF Series Switches with LAN Lite Software
2960S-F48TS-S 48 Ethernet 10/100 ports 2 SFP
2960S-F24TS-S 24 Ethernet 10/100 ports 2 SFP

What’s the Difference Between the LAN Base and LAN Lite Switches?
The Cisco 2960-SF switches support the LAN Base and the LAN Lite software feature sets. The LAN Base feature set comes with advanced Layer 2(L2) features and is typically targeted at large enterprise customers. The LAN Lite feature set has entry-level L2 features and is targeted at mid market deployments. Following are the notable hardware differences:

  • Ease of management with Cisco FlexStack
  • Power of Ethernet (PoE/PoE+) capabilities
  • Increased number of VLANs
  • A wider selection of Small Form-Factor Pluggable (SFP) ports

Compatible Cisco 2960 SFP for Cisco 2960-SF Series Switches
By consulting the Cisco 100-Megabit Ethernet and Gigabit Ethernet SFP Modules Compatibility Matrix, I get following compatible Cisco 2960 SFP models that supported for 2960-SF series switches.

Compatible Fast Ethernet SFP Modules for Cisco 2960-SF Series Switches
Network Device Transceiver Model Description
2960S-F48TS-S

2960S-F24TS-S

GLC-GE-100FX 100BASE-FX SFP 1310nm 2km
GLC-FE-100FX 100BASE-FX SFP 1310nm 2km DOM
Compatible Gigabit Ethernet SFP Modules for Cisco 2960-SF Series Switches
Network Device Transceiver Model Description
2960S-F48TS-S

2960S-F24TS-S

2960S-F48FPS-L

2960S-F48LPS-L

2960S-F24PS-L

2960S-F48TS-L

2960S-F24TS-L

GLC-T 1000BASE-T Copper RJ-45 100m
GLC-TE 1000BASE-T Copper RJ-45 100m
GLC-SX-MM 1000BASE-SX SFP 850nm 550m
GLC-LH-SM 1000BASE-LX/LH SFP 1310nm 10km
GLC-SX-MMD 1000BASE-SX SFP 850nm 550m DOM
GLC-LH-SMD 1000BASE-LX/LH SFP 1310nm 10km DOM
GLC-EX-SMD 1000BASE-EX SFP 1310nm 40km DOM
Network Device Transceiver Model Description
2960S-F48FPS-L

2960S-F48LPS-L

2960S-F24PS-L

2960S-F48TS-L

2960S-F24TS-L

GLC-ZX-SM 1000BASE-ZX SFP 1550nm 70km
GLC-ZX-SMD 1000BASE-ZX SFP 1550nm 70km DOM
GLC-BX-D BiDi SFP 1490nm-TX/1310nm-RX 10km
GLC-BX-U BiDi SFP 1310nm-TX/1490nm-RX 10km
CWDM SFP 1270nm-1610nm (20nm spacing)

Conclusion
Cisco 2960-SF Ethernet switch enables a wide range of business or residential applications and services. FS.COM offers all above Cisco compatible transceiver with reasonable prices and high performance. All those products are tested before shipping to ensure high quality. For more details, please visit www.fs.com or contact us via sales@fs.com.

Related Article: Compatible Transceivers for Cisco Catalyst 4948E Switch

Cable management: MTP Modules and Harnesses in Data Center

Share

Traditional optical cable management such as duplex patch cords and duplex connector assemblies work well in application-specific, low-port-count environments. But as port counts scale upwards and system equipment turnover accelerates, these cable managements become unmanageable and unreliable. Deploying a modular, high-density, MTP-based structured wired cabling system in the data center will significantly increase response to data center moves, adds and changes (MACs). Knowledge of MTP modules and MTP harnesses will be provided in this blog.

Introduction to MTP Modules and Harnesses 
An obvious benefit to deploying a MTP-based optical network is its flexibility to transmit both serial and parallel signals. MTP to duplex connector transition devices such as modules and harnesses are plugged into the MTP trunk assemblies for serial communication. MTP Modules are typically used in lower-portcount break-out applications such as in server cabinets. MTP harnesses provide a significant increase in cabling density and find value in high port count break-out situations such as SAN Directors (see figure below). The built-in modularity of the solution provides flexibility to easily configure and reconfigure the cabling infrastructure to meet current and future networking requirements. MTP harnesses and modules can be exchanged or completely removed from the backbone network to quickly adapt to data center MACs.

mtp-modules-harnesses

MTP Modules in Data Centers
MTP modules typically are placed in a housing located in the cabinet rack unit space. Here the MTP trunk cable is plugged into the back of the module. Duplex patch cords are plugged into the front of the module and routed to system equipment ports. Integrating the MTP modules cabling solution into the data center cabinet can enhance the deployment and operation of the data center cabling infrastructure. As shown in the figure below, integrating the MTP modules into the cabinet vertical manager space maximizes the rack unit space available for data center electronics. MTP modules are moved to the cabinet sides where they snap into brackets placed between the cabinet frame and side panel. Properly engineered solutions will allow MTP modules to be aligned with low-port-count system equipment placed within the cabinet rack unit space to best facilitate patch cord routing.

mtp-modules

MTP Harnesses in Data Centers
MTP harnesses are plugged into the backbone MTP trunk assemblies through an MTP adapter panel. The MTP adapter panel is placed in a housing that is also typically located in the cabinet rack unit space. MTP to LC 12-fiber break-out harnesses plug into the front of the adapter panels and are routed over to the director line cards where the LC duplex ends are plugged into the line card ports (see figure below). These MTP harnesses are pre-engineered to a precise length with strict tolerances to minimize slack, while a small outside diameter allows for easy routing without preferential bend concerns. With a pre-engineered cabling management, not only is installation simplified, but the time required for SAN design and documentation is greatly reduced with port mapping architecture inherent to the design.

mtp-harnesses

Conclusion
The move from the traditional low-density duplex patch cord or assembly cabling management solution to a high-density MTP module and harnesses cabling management solution integrated into the cabinet vertical manager enables the physical layer to be implemented in a manner that provides a flexible and reliable cable management in the data center. FS.COM MTP cassette provide a quick and efficient way to deploy up to 24 LC or 12 SC fiber ports in a single module. Modules are available in multimode (62.5/125 and 50/125) and single-mode cable. MTP harnesses in FS.COM are available in 8-fiber MTP to LC breakout cable, 12-fiber MTP to LC breakout cable and MTP to 24-fiber LC for your options. For more information, please feel free to contact us at sales@fs.com.