Tag Archives: single-mode fiber

40G Deployment: The Cost Difference Between SMF and MMF

FacebookTwitterGoogle+LinkedInRedditTumblrShare

40G network are now being extensively adopted within LANs and data centers. 100G is still predominantly in the carrier network, but could soon extend its stretch to your local network. There exists much confusion as to whether to choose single-mode fiber (SMF) or multimode fiber (MMF) for deploying 40G bandwidth, considering the single mode vs multimode fiber cost. As well as how to get fully prepared for scaling to higher-speed 100G. If you are hesitating to make the choice, you may find this article helpful.

40G Cost: Difference Between SMF and MMF

Multimode Fiber (MMF): Cost-effective With Higher Tolerance to Dirt

Cost-effectiveness: Multimode fiber (MMF) has been evolving to handle the escalating speed: OM3 has been superseded by OM4 and OM5 is there ready to use. MMF has a wider array of short distance transceivers that are easier to get. One of the liable argument that in favor of using MMF is that multimode optics use less power than single-mode ones, but only in condition that you have tens of thousands of racks. In essence, MMF still has its position under certain circumstances, like cabling within the same rack, in Fiber Channel and for backbone cabling in some new construction buildings.

smf mmf

Tolerance to Dirt: Multimode fiber tends to have a lot more tolerance to dirty connections than single-mode fiber. It can handle very dirty couples or connectors to ensure reliable and consistent link performance. Besides, it is easy to terminate, and more accommodating bend radius. So MMF is preferred by links that change frequently or are less than permanent.

smf mmf

Single-mode Fiber (SMF): Higher Capability and Better Future-proofing

Speed capability: Capacities are really vital for network growth. SMF does so with relatively larger capability than that of MMF. The gap between SMF and MMF cabling is much wider for high-density, high-speed networks. If you want to go further with SMF, say scaling to 100G or beyond, you simply need to upgrade the optics. Unlike using MMF, in which you have to upgrade the glass (OM3 to OM4 to OM5), the labor cost concerning this cannot be underestimated. The capacity for scaling of SMF alone makes it worth the cost. You can use single-mode for almost everything, no need for media conversion. SMF offers enough bandwidth to last a long time, making it possible to upgrade 100 Gbps to Tbps with CWDM/DWDM.

smf mmf

Future proofing: Despite the fact that SM optical transceivers usually cost higher than MM optics, SMF cabling is cheaper and can support much longer distance and reliable performance. Not to mention that bandwidth on SMF keeps going up and up on the same old glass. The good news is that the cost of SMF is dropping in recent years, and it is redesigning to run with less power, thus advocators of SMF think that it is pretty much the only rational choice for infrastructure cabling and the sure winner for today and tomorrow.

SMF and MMF: A Simple Comparison of Cost

There is no doubt that SMF is a better investment in the long run, but MMF still has a long way to go in data center interconnections. In fact the price difference of SMF optics and MMF optics can be minimized if you choose the right solution. Assuming to connect two 40G devices at 70 m away, let’s see the single mode vs multimode fiber cost for deployment in the following chart.

Module Connector Type SMF or MMF Price 2 Connections 4 Connections 6 Connections
40GBASE-SR4 MPO12 MMF, OM4 $49.00 $564.48 $1128.96 $1693.44
40GBASE-BiDi LC MMF, OM4 $300.00 $1534.24 $2734.24 $3934.24
40GBASE-LR4 LC SMF, OS2 $340.00 $1,609.84 $2,969.84 $4,329.84
80 Gbit 160 Gbit 240 Gbit

 

Conclusion

Choosing the right fiber for your network application is a critical decision. Understanding your system requirements in order to select the appropriate fiber will maximize the value and performance of your cabling system. Be sure to select the right cable on the basis of aspects including link length, performance, and of course costs. FS provides a broad range of 40G optical transceivers and fiber patch cables with superior quality and fair price. For more details, please visit www.fs.com.




Common Mistakes in Fiber Optic Network Installation

When install a fiber optic network, people may make some common mistakes, which were usually overlooked. In this article, I will list the most common ones. Hope to give you some guidance for your optical network installation.

1. Single Strand Fiber Device Must Be Used in Pairs

You will never buy two left shoes, but people often make a similar mistake when they’re working with Single Strand Fiber (SSF). Single strand fiber technology allows for the use of two independent wavelengths, such as 1310 and 1550 nm, on the same piece of cable. The most common single strand fiber device is Bi-Directional (BiDi) transceiver. Two BiDi transceiver must be matched correctly. One unit must be a 1310nm-TX/1550nm-RX transceiver (transmitting at 1310 nm, receiving at 1550 nm) and the other must be a 1550nm-TX/1310nm-RX transceiver (transmitting at 1550 nm, receiving at 1310 nm). The 1550nm-TX/1310nm-RX transceiver is more expensive than the 1310nm-TX/1550nm-RX transceiver, due to the cost of their more powerful lasers. So network engineers may hope to save money by installing a pair of 1310nm-TX/1550nm-RX transceivers. But, like mismatched shoes, it doesn’t work.

single-strand-fiber

2. Don’t Use Single-Mode Fiber over Multimode Fiber

Some people may want to make use of legacy cabling or equipment from an older fiber installation to save cost. But keep in mind that single-mode and multimode fiber are usually incompatible. Multimode fiber uses cable with a relatively large core size, typically 62.5 microns (om2, om3 and om4), and 50 microns (om1) still used in some installations. The larger core size simplifies connections and allows for the use of less powerful, less expensive light sources.  But the light therefore tends to bounce around inside the core, which increases the modal dispersion. That limits multimode’s useful range to about 2 km. Single-mode fiber combines powerful lasers and cabling with a narrow core size of 9/125 microns to keep the light focused.  It has a range of up to 120 km, but it is also more expensive. If you tried to use single-mode fiber over a multimode fiber run.  The core size of the fiber cable would be far too large.  You’d get dropped packets and CRC errors.

single-mode-multimode-fiber

3. Understand All kinds of Fiber connectors First

Fiber optic transceivers use a variety of connectors, so make clear their differences before you begin ordering products for a fiber installation is necessary. SC (stick and click) is a square connector. ST (stick and twist) is a round, bayonet-type. LC, or the “Lucent Connector”, was developed by Lucent Technologies to address complaints that ST and SC were too bulky and too easy to dislodge. LC connectors look like a compact version of the SC connector. SFP (small form‐factor pluggable) transceivers usually use LC connector.  Less common connectors include MT-RJ and E2000.

st-lc-sc

4.Connector Links and Splice Times Also Affect 

Although single-mode fiber suffers from less signal loss per km than multimode, all fiber performance is affected by connectors and splices. The signal loss at a single connector or splice may seem insignificant. But as connectors and splices become more numerous signal loss will steadily increase. Typical loss factors would include 0.75 dB per connector, 1 dB per splice, 0.4 dB attenuation per km for single-mode fiber and 3.5 dB attenuation per km for multimode fiber.  Add a 3 dB margin for safety. The more splices and connectors you have in a segment, the greater the loss on the line.

5. Don’t Use APC connector with UPC Connector

Fiber connections may use Angle Polished Connectors (APC) or Ultra Polished Connectors (UPC), and they are not interchangeable. There are physical differences in the ferules at the end of the terminated fiber within the cable (shown in the figure below).  An APC ferrule end-face is polished at an 8° angle, while the UPC is polished at a 0° angle. If the angles are different, some of the light will fail to propagate, becoming connector or splice loss. UPC connectors are common in Ethernet network equipment like media converters, serial devices and fiber‐based switches. APC connectors are typical for FTTX and PON connections.  ISPs are increasingly using APC.

apc-upc-connector

6. Don’t Connect SFP to SFP+ Transceivers

Small Form Pluggable (SFP) transceivers are more expensive than fixed transceivers.  But they are hot swappable and their small form factor gives them additional flexibility. They’ll work with cages designed for any fiber type and their prices are steadily dropping.  So they have become very popular. Standard SFPs typically support speeds of 100 Mbps or 1 Gbps. XFP and SFP+ support 10 Gbps connections. SFP+ is smaller than XFP and allows for greater port density.  Though the size of SFP and SFP+ is the same, you can’t connect SFP+ to a device (SFP) that only supports 1 Gbps.

Related Article: Optical Module Maintenance Methods and Installation Tips

SMF or MMF? Which Is the Right Choice for Data Center Cabling?

Selecting the right cabling plant for data center connectivity is critically important. The wrong decision could leave a data center incapable of supporting future growth, requiring an extremely costly cable plant upgrade to move to higher speeds. In the past, due to high cost of single-mode fiber (SMF), multimode fiber (MMF) has been widely and successfully deployed in data center for many years. However, as technologies have evolved, the difference in price between SMF and MMF transceivers has been largely negated. With cost no longer the dominant decision criterion, operators can make architectural decisions based on performance. Under these circumstances, should we choose SMF or MMF? This article may give you some advice.

MMF Can’t Reach the High Bandwidth-Distance Needs
MMF datacenterBased on fiber construction MMF has different classifications types that are used to determine what optical signal rates are supported over what distances. Many data center operators who deployed MMF OM1/OM2 fiber a few years ago are now realizing that the older MMF does not support higher transmit rates like 40GbE and 100GbE. As a result, some MMF users have been forced to add later-generation OM3 and OM4 fiber to support standards-based 40GbE and 100GbE interfaces. However, MMF’s physical limitations mean that as data traffic grows and interconnectivity speeds increase, the distance between connections must decrease. The only alternative in an MMF world is to deploy more fibers in parallel to support more traffic. Therefore, while MMF cabling has been widely and successfully deployed for generations, its limitations now become even more serious. Operators must weigh unexpected cabling costs against a network incapable of supporting new services.

SMF Maybe a Viable Alternative
Previously, organizations were reluctant to implement SMF inside the data center due to the cost of the pluggable optics required, especially compared to MMF. However, newer silicon technologies and manufacturing innovations are driving down the cost of SMF pluggable optics. Transceivers with Fabry-Perot edge emitting lasers (single-mode) are now comparable in price and power dissipation to VCSEL (multimode) transceivers. Besides, Where MMF cable plants introduce a capacity-reach tradeoff, SMF eliminates network bandwidth constraints. This allows operators to take advantage of higher-bit-rate interfaces and wave division multiplexing (WDM) technology to increase by three orders of magnitude the amount of traffic that the fiber plant can support over longer distances. All these factors make SMF a more viable option for high-speed deployments in data centers.

SMF datacenter

Comparison Between SMF and MMF
10GbE has become the predominant interconnectivity interface in large data centers, with 40GbE and 100GbE playing roles in some high-bandwidth applications. Put simply, the necessity for fiber cabling that supports higher bit rates over extended distances is here today. With that in mind, the most significant difference between SMF and MMF is that SMF provides a higher spectral efficiency than MMF, which means it supports more traffic over a single fiber using more channels at higher speeds. This is in stark contrast to MMF, where cabling support for higher bit rates is limited by its large core size. This effectively limits the distance higher speed signals can travel over MMF fiber. In fact, in most cases, currently deployed MMF cabling is unable to support higher speeds over the same distance as lower-speed signals.

Name Interface FP (SMF) VCSEL (MMF)
Link Budget (dB)
4 to 6 2
Reach (in meters) (Higher value is better)
10GbE 1300 300
40GbE 1300 150
100GbE 1300 <100

Conclusion
As operators consider their cabling options, the tradeoff between capacity and reach is important. Network operators must assess the extent to which they believe their data centers are going to grow. For environments where users, applications, and corresponding workload are all increasing, single mode fiber offers the best future proofing for performance and scalability. And because of fundamental changes in how transceivers are manufactured, those benefits can be attained at prices comparable to SMF’s lower performing alternative.

Source:http://www.fs.com/blog/smf-or-mmf-which-is-the-right-choice-for-data-center-cabling.html

Understanding Wavelengths in Fiber Optics

The light we are most familiar with is surely the light we can see. Our eyes are sensitive to light whose wavelength is in the range of about 400 nm to 700 nm, from the violet to the red. But for fiber optics with glass fibers, we use light in the infrared region which has wavelengths longer than visible light. Because the attenuation of the fiber is less at longer wavelengths. This text may mainly tell you what the common wavelengths used in fiber optics are and why they are used.

wavelength-nm

Wavelengths Definition

In fact, light is defined by its wavelength. It is a member of the frequency spectrum, and each frequency (sometimes also called color) of light has a wavelength associated with it. Wavelength and frequency are related. Generally, the radiation of shorter wavelengths are identified by their wavelengths, while the longer wavelengths are identified by their frequency.

Common Wavelengths in Fiber Optics

Wavelengths typically range from 800 nm to 1600 nm, but by far the most common wavelengths actually used in fiber optics are 850 nm, 1300 nm, and 1550 nm. Multimode fiber is designed to operate at 850 nm and 1300 nm, while single-mode fiber is optimized for 1310 nm and 1550 nm. The difference between 1300 nm and 1310 nm is simply a matter of convention. Both lasers and LEDs are used to transmit light through optical fiber. Lasers are usually used for 1310nm or 1550nm single-mode applications. LEDs are used for 850nm or 1300nm multimode applications.

wavelength-nm

Why Those Common Wavelengths?

As mentioned above, the most common wavelengths used in fiber optics are 850 nm, 1300 nm and 1550 nm. But why do we use these three wavelengths? Because the attenuation of the fiber is much less at those wavelengths. Therefore, they best match the transmission properties of available light sources with the transmission qualities of optical fiber. The attenuation of glass optical fiber is caused by two factors: absorption and scattering. Absorption occurs in several specific wavelengths called water bands due to the absorption by minute amounts of water vapor in the glass. Scattering is caused by light bouncing off atoms or molecules in the glass.

It is strongly a function of wavelength, with longer wavelengths having much lower scattering. From the chart below, we can obviously see that there are three low-lying areas of absorption, and an ever-decreasing amount of scattering as wavelengths increase. As you can see, all three popular wavelengths have almost zero absorption.

wavelength-nm

Conclusion

After reading this passage, you may know some basic knowledge of wavelengths in fiber optics. Since the attenuation of the wavelengths at 850 nm, 1300 nm, and 1550 nm are relatively less, they are the most three common wavelengths used in fiber optic communication. Fiberstore offer all kinds multimode and single-mode fiber optic transceivers which operate on 850 nm and 1310 nm respectively very well. For more information, please visit fs.com.

Related Article: From O to L: the Evolution of Optical Wavelength Bands

Related Article: The Bandwidth and Window of Fiber Optic Cable

Do You Know About Mode Conditioning Patch Cord?

The great demand for increased bandwidth has prompted the release of the 802.3z standard (IEEE) for Gigabit Ethernet over optical fiber. As we all know, 1000BASE-LX transceiver modules can only operate on single-mode fibers. However, this may pose a problem if an existing fiber network utilizes multimode fibers. When a single-mode fiber is launched into a multimode fiber, a phenomenon known as Differential Mode Delay (DMD) will appear. This effect can cause multiple signals to be generated which may confuse the receiver and produce errors. To solve this problem, a mode conditioning patch cord is needed. In this article, some knowledge of mode conditioning patch cords will be introduced.

What Is a Mode Conditioning Patch Cord?

A mode conditioning patch cord is a duplex multimode cord that has a small length of single-mode fiber at the start of the transmission length. The basic principle behind the cord is that you launch your laser into the small section of single-mode fiber, then the other end of the single-mode fiber is coupled to multimode section of the cable with the core offset from the center of the multimode fiber (see diagram below).

mode conditioning patch cord

This offset point creates a launch that is similar to typical multimode LED launches. By using an offset between the single-mode fiber and the multimode fiber, mode conditioning patch cords eliminate DMD and the resulting multiple signals allowing use of 1000BASE-LX over existing multimode fiber cable systems. Therefore, these mode conditioning patch cords allow customers an upgrade of their hardware technology without the costly upgrade of their fiber plant.

Some Tips When Using Mode Conditioning Patch Cord

After learning about some knowledge of mode conditioning patch cords, but do you know how to use it? Then some tips when using mode conditioning cables will be presented.

    • Mode conditioning patch cords are usually used in pairs. Which means that you will need a mode conditioning patch cord at each end to connect the equipment to the cable plant. So these patch cords are usually ordered in numbers. You may see someone only order one patch cord, then it is usually because they keep it as a spare.
    • If your 1000BASE-LX transceiver module is equipped with SC or LC connectors, please be sure to connect the yellow leg (single-mode) of the cable to the transmit side, and the orange leg (multimode) to the receive side of the equipment. The swap of transmit and receive can only be done at the cable plant side. See diagram below.

mode conditioning patch cord

  • Mode conditioning patch cords can only convert single-mode to multimode. If you want to convert multimode to single-mode, then a media converter will be required.
  • Besides, mode conditioning patch cables are used in the 1300nm or 1310nm optical wavelength window, and should not be used for 850nm short wavelength window such as 1000Base-SX.

Conclusion

From the text, we know that mode conditioning patch cords really significantly improve the data signal quality and increase the transmission distance. But when using it, there are also some tips must be kept in mind. Fiberstore offer mode conditioning patch cords in all varieties and combinations of SC, ST, MT-RJ and LC fiber optic connectors. All of the Fiberstore’s mode conditioning patch cords are at high quality and low price. For more information, please visit fs.com.

What’s the Difference: Single Mode vs Multimode Fiber

fiber cable diagAn optical fiber is a flexible, transparent fiber made of extruded glass or plastic, slightly thicker than a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than wire cables. Optical fibers typically include a transparent core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by the phenomenon of total internal reflection which causes the fiber to act as a waveguide.

In general, there are two kinds of optical fiber: fibers that support many propagation paths or transverse modes are called multimode fibers (MMF), while those that support a single mode are called single mode fibers (SMF). Single mode vs multimode fiber: what’s difference between them? Reading this text will help you get the answer.

Single Mode vs Multimode Fiber: What’s single mode optical fiber?

In fiber-optic communication, a single mode optical fiber (SMF) is an optical fiber designed to carry light only directly down the fibre – the transverse mode. For single mode optical fiber, no matter it operates at 100 Mbit/s or 1 Gbit/s date rates , the transmission distance can reach to at least 5 km. Typically, it is used for long-distance signal transmission.

single mode fiber

Single Mode vs Multimode Fiber: What’s multimode optical fiber?

Multimode optical fiber (MMF) is a type of optical fiber mostly used for communication over short distances, such as within a building or on a campus. Typical transmission speed and distance limits are 100 Mbit/s for distances up to 2 km (100BASE-FX), 1 Gbit/s up to 1000m, and 10 Gbit/s up to 550 m. There are two kinds of multimode indexes: step index and graded index.

multimode fiber

What’s difference between single mode optical fiber and multimode?

  • Core diameter

The main difference between multimode and single mode fiber is that the former has much larger core diameter, typically has a core diameter of 50 or 62.5 µm and a cladding diameter of 125 µm. While a typical single mode fiber has a core diameter between 8 and 10 µm and a cladding diameter of 125 µm.

Single Mode vs Multimode Fiber

  • Optical source
    Both lasers and LEDs are used as light sources. Laser light sources are significantly more expensive than LED light sources however they produce a light that can be precisely controlled and which has a high power. Because the LED light sources produce a more dispersed light source (many modes of light) these light sources are used with multimode
    cable. While a laser source is used (which produces close to a single mode of light) with single mode cable.

Single Mode vs Multimode Fiber

  • Bandwidth
    Since multimode fiber has a larger core-size than single mode fiber, it supports more than one propagation mode. Besides, like multimode fibers, single-mode fibers do exhibit modal dispersion resulting from multiple spatial modes, but the modal dispersion of single mode fiber is less than multi-mode fiber. For these reasons, single mode fibers can have a higher bandwidth than multi-mode fibers.
  • Jacket color
    Jacket color is sometimes used to distinguish multimode cables from single mode ones. The standard TIA-598C recommends, for non-military applications, the use of a yellow jacket for single mode fiber, and orange or aqua for multimode fiber, depending on type. Some vendors use violet to distinguish higher performance OM4 communications fiber from other types.

Single Mode vs Multimode Fiber

  • Modal dispersion
    The LED light sources sometimes used with multimode fiber produce a range of wavelengths and these each propagate at different speeds. This will lead to much modal dispersion, which is a limit to the useful length for multimode fiber optic cable. In contrast, the lasers used to drive single mode fibers produce coherent light of a single wavelength. Hence its modal dispersion is much less than multimode fiber. Due to the modal dispersion, multimode fiber has higher pulse spreading rates than single mode fiber, limiting multimode fiber’s information transmission capacity.

Single Mode vs Multimode Fiber

  • Price
    For multimode fiber can support multiple light mode, the price of it is higher than single-mode fiber. But in terms of the equipment, because single mode fiber normally uses solid-state laser diodes, therefore, the equipment for single mode fiber is more expensive than equipment for multimode fiber. And for this reason , the cost of using multimode fiber is much less than using single-mode fiber instead.

Single Mode vs Multimode Fiber: What kind of optical fiber should I choose?
This is based on transmission distance to be covered as well as the overall budget allowed. If the distance is less than a couple of miles, multimode fiber will work well and transmission system costs (transmitter and receiver) will be in the $500 to $800 range. If the distance to be covered is more than 3-5 miles, single mode fiber is the choice. Transmission systems designed for use with this fiber will typically cost more than $1000 due to the increased cost of the laser diode.

Related Article: Single Mode Fiber: How Much Do You Know?

The Characteristics Of Single mode Fiber and Multimode Fiber

Fiber optic cable is the most common and important transmission medium in optical communication system. It consists of a single glass core, the cladding layer close to the core, a primary coating layer and a protective layer composed of plastic cap.(Cylindrical fiber, the core, cladding and coating layers composed of three parts.) Core and the cladding layer consists of two different optical properties of the medium constituting the medium refractive index of light than the interior of a surrounding medium high refractive index. In the periphery of the package as the cover layer of opaque material, as the light is prevented from escaping from the surface during interspersed. Fiber optic cable has two types: single mode fiber and multimode fiber.

Multimode Fiber

When the geometry of the fiber is much larger than the wavelength of light (about lμm), optical transmission process will be a significant presence of dozens or even hundreds of transport modes, such as the fiber is called multimode fiber.

Due to different propagation modes having different phase propagation velocity, thus, long-distance transmission is generated through mode dispersion (after long-distance transmission delay difference is generated, resulting in the optical pulse broadening). Side mode dispersion will narrow the bandwidth of multimode fiber, the transmission capacity is reduced, and therefore, multi-mode fiber is only suitable for low speed, short-distance optical fiber communication, data communication is currently a large number of multi-mode fiber local area network.

Main products and application performance of multimode fiber in the following table:

Multimode Fiber
The related products about 62.5/125mm multimode fiber from fs.com, it is below:

Duplex OM1 62.5 125 Fiber Patch Cable

The product about  50/125mm OM2 multimode fiber

Duplex OM2 50 125 Fiber Patch Cable

Single Mode Fiber 

When the geometry of the fiber is small, and the wavelength of the same order as the core diameter in the range of 4-10μm, the optical fiber allows only one mode (basic mode) in which the transmission, the remaining high-order mode are all turned off, so that said single mode fiber. Avoid the mode dispersion single mode fiber, suitable for large-capacity long-distance transmission.

IEC 60793-2 and IEC 60793-2-50 single mode fiber will be divided into B1.1, B1.2, B1.3, B2, B4, B5, B6 and other categories, ITU-T also G.652, G .653, G.654, G.655, G.656, G.657 and other recommendations were standardized definition and characteristics of various single mode fiber, and each part of the GB / T 9771 with reference to IEC 60793-2-50 ITU-T G.65x series formulation.

A given type of single mode fiber, the mode field diameter by (also called effective area), the dispersion coefficient, dispersion slope, wavelength cutoff adapted to optimize the parameters, and access ways for different applications.

Basic Knowledge About Fiber Optic Cable

From data and voice to security and video conferencing, many of today’s IT infrastructure services rely on fiber optics to transmit information faster, farther, and in greater amounts than ever before. So fiber optics are more and more popularity in our internet. This post will try to answer some of the basic questions about fiber optic cable.

What Is Fiber Optic Cable?

A fiber optic cable is a network cable that contains strands of glass fibers inside an insulated casing. These cables are designed for long distance and very high bandwidth (gigabit speed) network communications.

Fiber Optic Cable

Single Mode vs. Multimode Fiber Optic Cable

Single mode fiber gives you a higher transmission rate and up to 50 times more distance than multimode, but it also costs more. Single-mode fiber has a much smaller core than multimode fiber-typically 5 to 10 microns. Only a single lightwave can be transmitted at a given time. The small core and single lightwave virtually eliminate any distortion that could result from overlapping light pulses, providing the least signal attenuation and the highest transmission speeds of any fiber cable type.

Multimode fiber gives you high bandwidth at high speeds over long distances. Lightwave is dispersed into numerous paths, or modes, as they travel through the cable’s core. Typical multimode fiber core diameters are 50, 62.5, and 100 micrometers. However, in long cable runs (greater than 3000 feet (914.4 ml), multiple paths of light can cause signal distortion at the receiving end, resulting in an unclear and incomplete data transmission. For example, you can try to compare the single mode duplex fiber vs multimode duplex fiber optic cable, and well know they are different.

The Relationship between Fiber Optic Cable and Fiber Patch Cord

A fiber patch cord is a fiber optic cable capped at either end with connectors that allow it to be rapidly and conveniently connected to CATV, an optical switch or other telecommunication equipment. Its thick layer of protection is used to connect the optical transmitter, receiver, and the terminal box. This is known as “interconnect-style cabling”.

What Types of Connectors Should be Used for Fiber Optic Cable?

There are a number of connector styles on the market including LC, FC, MT-RJ, ST, and SC. There are also MT/MTP style connectors that will accommodate up to 12 strands of fiber and take up far less space than other connectors. This connector is intended for use with indoor loose tube no-gel cable constructions. However, the most popular connectors are SC, which pushes in then click when seated, and ST, also known as bayonet style, that is pushed in and twisted to lock. That should be a consideration when making product selections.

What kind of jacket rating and type do you require?

Fiber cable jackets come in many styles. As an example, fiber can be Indoor only, Outdoor only, Indoor/Outdoor, Tactical and it can also have Plenum or Riser ratings.

Jacket color is relatively standardized.

a) Multimode = Orange

b) 50/125um 10G = Aqua

c) Single Mode = Yellow

d) Indoor/Outdoor or Outdoor = Black

e) Custom jacket colors are also available for indoor fiber cables

Conclusion

Whether you are working in a residential or commercial environment. FiberStore offers a wide variety of fiber cables, and other fiber optic cables related products, such as fiber patch cable, fiber optic connector, fiber transceiver. No matter how complex or simple your installation needs are, we have the expertise to provide you with the right products and information for both your fiber optic cable, custom fiber optic assembly and fiber optic connector needs. If you wanna customize your fiber optic products, pls give us a call, our Tel is  +86 (755) 8300 3611 or sent your detail requirement email to sales@fs.com. Thank you!

Choose The LC Fiber Patch Cables

:: A Small History of LC Connectors

The LC connector was  a evolutionary approach to experiencing this goals of SFF (Small Form Factor) connector. The LC connector utilizes the traditional aspects of a SC duplex connector having independent ceramic ferrules and housings with the overall size scaled down by one half.

The LC family of connectors includes a stand-alone simplex design, a behind-the-wall (BTW) connector, and also the duplex connector available in both single mode and multimode tolerances, all designed while using RJ-style latch.

The LC connector is a universal connector. It is available in simplex and duplex configurations and is half how big the SC and utilizes a 1.25mm ferule. The LC is highly favored for single mode and is easily terminated with an adhesive. They’re actively replacing the SC connectors in corporate environments due to their smaller size.

:: The Most Critical Parameters You Should Be Looking

Many manufacturers make LC optic fiber patch cables, but they are not all created equal. Here are the most critical optical performance parameters you should be looking closely. This fiber optic cable manufacturer provide the detail fiber optic cable specifications, you can reference its specs.

A) Single mode LC optic fiber patch cables

Single mode LC patch cords is available in several polishing favors: PC, UPC and APC.

a) PC means Physical Contact.

This is the most basic polishing. The back reflection is not too good, especially for just one mode fiber system. The rear reflection is under -45dB. Since single mode fiber systems are particularly sensitive to back reflections, we don’t recommend using PC polish. It is best to choose a UPC polish for single mode LC fibers.

b) UPC stands for Ultra Physical Contact.

It supplies a better back reflection performance: under -50dB. While not providing the superior optical return loss performance of the APC connector – UPC connector has return loss (back reflection) characteristics that are appropriate for intraplant serial video or data transmissions.

c) APC means Angled Physical Contact.

The endface is polished precisely in an 8-degree angle to the fiber cladding to ensure that most return loss is reflected into the cladding where it can’t hinder the transmitted signal or damage the laser source.

As an effect, APC connectors offer a superior RL performance of -65 dB. APC LC optic fiber patch cables are best for high bandwidth applications and long haul links because it provides the lowest return loss (RL) characteristics of connectors now available.

However, it is extremely hard to terminate an LC APC connector at 8 degrees with any consistent degree of success within the field.

B) Multimode LC fiber patch cables

Multimode LC optic fiber patch cords have only one sort of polishing: PC (Physical Contact) polishing.

However, there are at least three kinds of common multimode fibers to select from. 62.5/125um multimode fiber (also called OM1), 50/125um multimode fiber (also known as OM2), and 10Gig laser optimized 50/125um multimode fiber (also known as OM3 multimode fiber OR OM4 multimode fiber ).

Among multimode LC fiber patch cables, usually you only care about the insertion loss which needs to be no more than 0.3 to 0.5dB.

:: Which kind of LC Patch Cords Do you want?

LC fiber patch cables are available in a variety of configurations, such as LC to FC, LC to ST, LC to SC, LC to LC, LC to MTRJ, and many more. LC fibers can be found in simplex fiber cable and duplex fiber cable configurations.

Different Single Mode and Multimode Fiber Types

Fiber optic cables are the medium of choice in telecommunications infrastructure, enabling the transmission of high-speed voice, video, and data traffic in enterprise and service provider networks. Depending on the type of application and the reach to be achieved, various types of fiber may be considered and deployed, such as single mode fiber type and multimode duplex fiber.

Fiber optic cables come in several different configurations, each ideally suited to a different use or application. Early fiber designs that are still used today include single mode fiber type and multimode fiber. Since Bell Laboratories invented the concept of application-specific fibers in the mid-1990s, fiber designs for specific network applications have been introduced. These new fiber designs – used primarily for the transmission of communication signals – include Non-Zero Dispersion Fiber (NZDF), Zero Water Peak Fiber (ZWPF), 10-Gbps laser optimized multimode fiber, and fibers designed specifically for submarine applications. Specialty fiber designs, such as dispersion compensating fibers and erbium doped fibers, perform functions that complement the transmission fibers. The differences among the different transmission fiber types result in variations in the range and the number of different wavelengths or channels at which the light is transmitted or received, the distances those signals can travel without being regenerated or amplified, and the speeds at which those signals can travel.

There are two different types of fiber optic cable: multimode and single mode fiber type (MMF and SMF). Both are used in a broad range of telecommunications and data networking applications. These fiber types have dominated the commercial fiber market since the 1970’s. The distinguishing difference, and the basis for the naming of the fibers, is in the number of modes allowed to propagate in the core of a fiber. The “mode” is an allowable path for the light to travel down a fiber. A multimode fiber allows many light propagation paths, while a single mode fiber allows only one light path.

In multimode fiber, the time it takes for light to travel through a fiber is different for each mode resulting in a spreading of the pulse at the output of the fiber referred to as intermodal dispersion. The difference in the time delay between the modes is called Differential Mode Delay (DMD). Intermodal dispersion limits multimode fiber bandwidth. This is significant because a fiber’s bandwidth determines its information carrying capacity, i.e., how far a transmission system can operate at a specified bit error rate.

The optical fiber guides the light launched into the fiber core (Figure 1). The cladding is a layer of material that surrounds the core. The cladding is designed so that the light launched into the core is contained in the core. When the light launched into the core strikes the cladding, the light is reflected from the core-to-cladding interface. The condition of total internal reflection (when all of the light launched into the core remains in the core) is a function of both the angle at which the light strikes the core-to-cladding interface and the index of refraction of the materials. The index of refraction (n) is a dimensionless number that characterizes the speed of light in a specific media relative to the speed of light in a vacuum. To confine light within the core of an optical fiber, the index of refraction for the cladding (n1) must be less than the index of refraction for the core (n2).

Fibers are classified in part by their core and cladding dimensions. Single mode duplex fiber have a much smaller core diameter than multimode duplex fiber optic cable. However, the Mode Field Diameter (MFD) rather than the core diameter is used in single mode fiber specifications. The MFD describes the distribution of the optical power in the fiber by providing an “equivalent” diameter, sometimes referred to as the spot size. The MFD is always larger than the core diameter with nominal values ranging between 8-10 microns, while single mode fiber core diameters are approximately 8 microns or less. Unlike single mode fiber type, multimode fiber is usually referred to by its core and cladding diameters. For example, fiber with a core of 62.5 microns and a cladding diameter of 125 microns is referred to as a 62.5/125 micron fiber. Popular multimode product offerings have core diameters of 50 microns or 62.5 microns with a cladding diameter of 125 microns. Single mode fibers also have 125 micron cladding diameters.

A single mode fiber, having a single propagation mode and therefore no intermodal dispersion, has higher bandwidth than multimode fiber. This allows for higher data rates over much longer distances than achievable with multimode fiber. Consequently, long haul telecommunications applications only use single mode fiber type, and it is deployed in nearly all metropolitan and regional configurations. Long distance carriers, local Bells, and government agencies transmit traffic over single mode fiber laid beneath city streets, under rural cornfields, and strung from telephone poles. Although single mode duplex fiber has higher bandwidth, multimode fiber supports high data rates at short distances. The smaller core diameter of single mode duplex fiber also increases the difficulty in coupling sufficient optical power into the fiber. Relaxed tolerances on optical coupling requirements afforded by multimode fiber enable the use of transmitter packaging tolerances that are less precise, thereby allowing lower cost transceivers or lasers. As a result, multimode duplex fiber optic cable has dominated in shorter distance and cost sensitive LAN applications.