Tag Archives: duplex fiber cable

WDM Optical MUX Technology

Share

With the exponential growth in communications, caused largely by the wide acceptance of the Internet, many carriers have found their estimates of fiber needs have been highly underestimated. Although most cables included many spare fibers when installed, this growth has used many of them and new capacity is required. Make use of a number of ways to improve this problem, eventually the WDM has shown more cost effective in most cases.

WDM Definition:

Wave Division Multiplexing (WDM) enables multiple data streams of varying wavelengths (“colors”) to become combined right into a single fiber, significantly enhancing the overall capacity from the fiber. WDM can be used in applications where considerable amounts of traffic are needed over long distance in carrier networks. There’s two types of WDM architectures: Course Wave Division Multiplexing (CWDM) and Dense Wave Division Multiplexing (DWDM).

WDM System Development History:

A WDM system uses a multiplexer in the transmitter to become listed on the signals together, and a demultiplexer at the receiver to separate them apart. With the right type of fiber it is possible to have a device that does both simultaneously, and can work as an optical add-drop multiplexer. The optical filtering devices used have conventionally been etalons (stable solid-state single-frequency Fabry¡§CP¡§|rot interferometers by means of thin-film-coated optical glass).

The idea was first published in 1980, and by 1978 WDM systems appeared to be realized in the laboratory. The first WDM systems combined 3 signals. Modern systems are designed for as much as 160 signals and can thus expand a fundamental 10 Gbit/s system over a single fiber pair to in excess of 1.6 Tbit/s.

WDM systems are well-liked by telecommunications companies because they allow them to expand the capacity of the network without laying more fiber. By utilizing WDM and optical amplifiers, they can accommodate several generations of technology rise in their optical infrastructure without needing to overhaul the backbone network. Capacity of a given link can be expanded by simply upgrades towards the multiplexers and demultiplexers at each end.

This is often made by use of optical-to-electrical-to-optical (O/E/O) translation in the very edge of the transport network, thus permitting interoperation with existing equipment with optical interfaces.

WDM System Technology:

Most WDM systems operate on single-mode fiber optical cables, which have a core diameter of 9 µm. Certain forms of WDM may also be used in multi-mode fiber cables (also referred to as premises cables) which have core diameters of fifty or 62.5 µm.

Early WDM systems were expensive and complicated to operate. However, recent standardization and better understanding of the dynamics of WDM systems make WDM less expensive to deploy.

Optical receivers, as opposed to laser sources, tend to be wideband devices. Therefore the demultiplexer must provide the wavelength selectivity of the receiver in the WDM system.

WDM systems are split into different wavelength patterns, conventional/coarse (CWDM) and dense (DWDM). Conventional WDM systems provide up to 8 channels within the 3rd transmission window (C-Band) of silica fibers around 1550 nm. Dense wavelength division multiplexing (DWDM) uses the same transmission window but with denser channel spacing. Channel plans vary, but a typical system would use 40 channels at 100 GHz spacing or 80 channels with 50 GHz spacing. Some technologies are capable of 12.5 GHz spacing (sometimes called ultra dense WDM). Such spacings are today only achieved by free-space optics technology. New amplification options (Raman amplification) enable the extension of the usable wavelengths towards the L-band, pretty much doubling these numbers.

Coarse wavelength division multiplexing (CWDM) in contrast to conventional WDM and DWDM uses increased channel spacing to allow less sophisticated and thus cheaper transceiver designs. To supply 8 channels on one fiber CWDM uses the whole frequency band between second and third transmission window (1310/1550 nm respectively) including both windows (minimum dispersion window and minimum attenuation window) but the critical area where OH scattering may occur, recommending using OH-free silica fibers in case the wavelengths between second and third transmission window ought to be used. Avoiding this region, the channels 47, 49, 51, 53, 55, 57, 59, 61 remain and these are the most commonly used.Each WDM Optical MUX includes its optical insertion loss and isolation measures of every branch. WDMs are available in several fiber sizes and kinds (250µm fiber, loose tube, 900µm buffer, Ø 3mm cable,simplex fiber optic cable or duplex fiber cable).

WDM, DWDM and CWDM are based on the same idea of using multiple wavelengths of sunshine on one fiber, but differ within the spacing of the wavelengths, quantity of channels, and also the capability to amplify the multiplexed signals within the optical space. EDFA provide an efficient wideband amplification for that C-band, Raman amplification adds a mechanism for amplification in the L-band. For CWDM wideband optical amplification is not available, limiting the optical spans to many tens of kilometres.

Regardless if you are WDM Optical MUX expert or it is your first experience with optical networking technologies, FiberStore products and services are equipped for simplicity of use and operation across all applications. If you want to choose some fiber optic cable to connect the WDM, you are able to make reference to our fiber optic cable specifications.Have any questions, pls contact us.

Duplex Fiber Among Fiber Optic Cables

Share

Duplex Fiber Cable

Duplex fiber cable is designed for general fiber patch cord production where consistency and uniformity are vital for fast, efficient terminations. We have the right duplex fiber cable in many different outside diameter (OD) sizes and meet all tooling and termination requirements.Duplex Fiber Optic Cables consist of two fibers joined by a thin connection between the two jackets. Workstations, fiber switches and servers, fiber optic modems, and similar hardware require duplex cable. They are used in applications where data needs to be transferred bi-directionally. One fiber transmits data one direction; the other fiber transmits data in the opposite direction. Duplex fiber optic cables from FiberStore can be available in single-mode and multimode.

Multimode vs Singlemode Fiber

A “mode” in Fiber Optic cable refers to the path in which light travels. Multimode cables have a larger core diameter than that of singlemode cables. This larger core diameter allows multiple pathways and several wavelengths of light to be transmitted. Singlemode Duplex cables and Singlemode Simplex cables have a smaller core diameter and only allow a single wavelength and pathway for light to travel. Multimode fiber is commonly used in patch cable applications such as fiber to the desktop or patch panel to equipment. Multimode fiber is available in two sizes, 50 micron and 62.5 micron. Singlemode fiber is typically used in network connections over long lengths and is available in a core diameter of 9 microns (8.3 microns to be exact). Many types of multimode fiber optic cable (such as om3 multimode fiber) and singlemode fiber optic cable for sale in FiberStore.

How Fiber Optic Cables Work

The traditional method of data transmission over copper cables is accomplished by transmitting electrons over a copper conductor. Fiber Optic cables transmit a digital signal via pulses of light through a very thin strand of glass. Fiber strands (the core of the fiber optic cable) are extremely thin, no thicker than a human hair. The core is surrounded by a cladding which reflects the light back into the core and eliminates light from escaping the cable.

A fiber optic chain works in the following manner. At the one end, the fiber cable is connected to a transmitter. The transmitter converts electronic pulses into light pulses and sends the optical signal through the fiber cable. At the other end, the fiber cable is plugged into a receiver which decodes the optical signal back into digital pulses.

Advantages & Disadvantages of Fiber Optic Cable

There are many advantages and disadvantages in using fiber optic cable instead of copper cable. One advantage is that fiber cables support longer cable runs than copper. In addition, data is transmitted at greater speeds and higher bandwidths than over copper cables.
The major disadvantages of fiber optic cables are cost and durability. Fiber cables are more expensive than copper cables and much more delicate.

Three Steps To Pick Out A Fiber Optic Cable
So when you go to pick out a fiber optic cable, there are a few things you’ll want to know. First, make sure that the type of connector you purchase matches your input connection. Second, check to see if your device prefers single or multi-mode transfer. Figure out if you need simplex fiber optic cable or duplex fiber optic cable. And finally, choose which length you need. You can discern this by setting up your system and running a string from the speaker or TV to the equipment. Always buy the next larger length rather than one that is on the small side. You won’t regret it!

The Importance Of Waterproof Cable

Share

The basic mechanical failure mechanism for optical fibres is the slow to rapid growth of any glass imperfections in the fibre caused by the fibre being under stress. This ‘fatigue’ phenomenon can be accelerated with the presence of moisture (H2O) molecules at the glass surface of the fibre. So the waterproof for fiber optic cable is very important . Now let us know more info about waterproof cable.

All manufacturers of fibre optic cables intended for use outdoors must address the issue of protecting the fibre’s glass surface from the presence of moisture. Many manufacturers provide the waterproof characteristic to solve the problem. This is because the 250μm primary fibre coating provides only a 62.5μm-thick layer of UV-cured acrylate material as basic protection over the fibre’s glass surface. This UV-cured acrylate material is not chosen by the fibre manufacturers for its optimal resistance to water or its minimal porosity. It is in fact chosen primarily because of its fast processing speed,since a primary cost driver for fibre manufacturers is the draw speed, which is steadily increasing. The very thin UV-cured acrylate layer is porous to water molecules and will permit concentration of OH-ions at the fibre surface, if the fibre is immersed in water.

All plastic materials are porous to varying degrees. The general category of thermoplastic materials commonly used in cable constructions will to some extent absorb water; however, thermoplastic materials certainly do not act as a complete water block. Only materials like metals or glass can provide a true ‘hermetic’ seal. Plastic materials are generally characterised with parameters such as water absorption and absorption of other common solvents such as oils, gasoline, kerosene, etc. This being the case, water molecules cannot be eliminated from the glass surface of any fibres incorporated in a cable having plastic jackets. The issue is to minimise the concentration of water molecules at the glass surface so that stress crack growth effects are minimised.

There are two different designs approaches to water and moisture protection in fibre optic cables.

The loose tube gel-filled cables must prevent water from reaching the 250μm coated fibres. This approach is to ‘waterproof’ the cable by ‘filling’ the empty spaces in the cable with gel, theoretically preventing water from reaching the 250μm coated fibres. To insure that this is accomplished, the ‘filled’ cables are generally subjected to a hosing test to show that water will not flow through a short section (one meter) of cables. The fact that gels can move, flow, and settle, leaves an uncertainty of the filled level of any particular point of a loose-tube gel-filled cable. This uncertainty of the filling is highlighted by the routine practice of water-blocking the loose-tube gel-filled cables at the entrance to splice housings to keep water from migrating from the cable into the splice housing.

The tight-buffered, tight bound indoor/outdoor cables utilise an entirely different design approach to deal with the moisture issue. Rather than attempting to be ‘waterproof’, they are designed to be water tolerant.

Recognising the porosity of plastic materials and the inherent problems of waterproofing a cable, the moisture protection is concentrated at the fibre surface where it is most needed.

Correctly designed harsh environment tight-buffer systems consist of extremely low moisture absorption coefficient materials at the fibre coating. This provides a buffer system thickness of 387μm over the glass which is more than six times as thick as the 62.5μm coating found in the loose-tube cables.

Buffer materials are low-porosity plastics with excellent moisture resistance. This construction very effectively minimises the water molecule and OH-ion concentration level at the glass surface and virtually eliminates the stress corrosion phenomenon. The tight-buffered design also has the great advantage of being a solid, non-flowing, non-moving structure.
The same level of protection remains in place all along the fibre, regardless of installation conditions, environment, or time.
The balance of the tight-buffered, tight bound cable designs is such that it minimises the open spaces available in the cable structure in which water can reside. Even if an outer cable jacket is cut, or water otherwise enters the cable structure, only a very small percentage of the cross-sectional area is open to water.

1,Water penetration refers to the effectiveness of cable in restricting the longitudinal movement of water or moisture along the core. This requirement is primarily intended to localise any water penetration to minimise the adverse effect on cable performance and to prevent water or moisture leaking into joints and terminations that may cause corrosion problems.
2,Additionally, cable installed underground should have a high density compound sheath material (such as poly ethylene) that provides an adequate barrier to moisture entry to the cable core. The addition of a lapped metal tape (‘moisture barrier’) and/or grease or gel within the core (‘filled’ or ‘flooded’ cable) provides even higher protection against moisture entry.

The above considerations is very important and should always be considered. Always refer to the manufacturers specification sheet and follow their installation instructions.

For the diverse requirements of our customer, we are involved in offering a wide assortment of waterproof cables. FiberStore offer these cables at very economical rates in the market. These cables are widely used and are highly demanded in the market due to their water proof nature. In addition to this, we offer these cables in various fiber optic cable specifications as per the requirements of our clients. We provide fiber optic cable products(such as duplex fiber cable,simplex fiber optic cable) are absolutely high quality and low price.

Some Tips To Choice Simplex And Duplex Fiber Cable

Share

When purchasing a fiber optic cable, it is important to understand the different varieties of core characteristics that are available within the cable itself. Each of these different characteristics will have different effects on your ability to transmit information reliably, and these different characteristics also affect the cabling project. You must search the cost of fiber optic cable if you bought the cable. Now, let’s take a look at the most common fiber optic cables.

Simplex Fiber Cable
A simplex fiber cable consists of a single strand of glass of plastic fiber, and is used for applications that only require one-way data transfer. Simplex fiber is most often used where only a single transmit and receive line is required between devices or when a multiplex data signal is used (bi-directional communication over a single fiber). Simplex fiber is available in singlemode and multimode. For example, an interstate trucking scale that sends the weight of the truck to a monitoring station or an oil line monitor that sends data about oil flow to a central location.

Duplex Fiber Cable
A duplex fiber cable consists of two strand fibers of glass or plastic. Typically found in a “zipcord”(side-by-side) construction format, this cable is most often used for duplex communication between devices where a separate transmit and receive are required. Duplex fiber is available in singlemode and multimode. Use multimode duplex fiber optic cable or single mode duplex fiber for applications that require simultaneous, bi-directional data transfer. Workstations, fiber switches and servers, fiber modems, and similar hardware require duplex fiber cable.

Cable Design Criteria For The Pulling Strength,Water Protection,Fiber Code Ratings

Pulling Strength: Some cable is simply laid into cable trays or ditches. So pull strength is not too important. But other cable may be pulled through 2 km or more of conduit. Even with lots of cable lubricant, pulling tension can be high. Most cables get their strength from an agamid fiber, a unique polymer fiber that is very strong but does not stretch – so pulling on it will not stress the other components in the cable. The simplest simplex cable has a pull strength of 100-200 pounds, while outside plant cable may have a specification of over 800 pounds.

Water Protection: Outdoors, every cable must be protected from water or moisture. It starts with a moisture resistant jacket, usually PE (polyethylene), and a filling of water-blocking material. The usual way is to flood the cable with a water-blocking gel. It’s effective but messy – requiring a gel remover. A newer alternative is dry water blocking using a miracle powder – the stuff developed to absorb moisture in disposable diapers. Check with your cable supplier to see if they offer it.

Fire Code Ratings: Every cable installed indoors must meet fire codes. That means the jacket must be rated for fire resistance, with ratings for general use, riser (a vertical cable feeds flames more than horizontal) and plenum (for installation in air-handling areas. Most indoor cables use PVC (polyvinyl chloride) jacketing for fire retardance. In the United States, all premises cables must carry identification and flammability ratings per the NEC (National Electrical Code) paragraph 770.

FiberStore is one of the industry’s fastest growing fiber optic cable manufacturer, specializing in providing quality, cost-effective retailing, wholesale and OEM fiber optic products. For more information on Simplex Fiber Cable or Duplex Fiber Cable and customization service, please email to sales@fs.com or visit fs.com.

Simplex Fiber Cable and Duplex Fiber Cable

Relationship Between The Fiber Optics And Fiber Optic Cable

Share

Fiber Optic Cable:

In fiber optic cable, optical fibers carry digital data signals in the form of modulated pulses of light. This is a relatively safe way to send data because no electrical impulses are carried over the fiber optic cable. This means that fiber-optic cable cannot be tapped and the data stolen, which is possible with any copper-based cable carrying data in the form of electronic signals.

Fiber optic cable is good for very high-speed, high-capacity data transmission because of the lack of attenuation and the purity of the signal.

A fiber optic cable can transmit information at very high speed over a very great distance. It comprises one or more optical fibers enveloped in a thermoplastic sheath for mechanical protection.

Fiber Optic Composition:

Optical fibers consist of an extremely thin cylinder of glass, called the core, surrounded by a concentric layer of glass, known as the cladding. The fibers are sometimes made of plastic. Plastic is easier to install, but cannot carry the light pulses as far as glass.

Each glass strand passes signals in only one direction. So a cable consists of two strands in separate jackets. One strand transmits and one receives. A reinforcing layer of plastic surrounds each glass strand while kevlar fibers provide strength.

Fiber Optic Technologies

Data transmission via fiber optic cable uses a laser beam, offering very little loss over great distances. The core fiber has a higher refractive index than its cladding material, keeping the light within by avoiding multiple reflection (single-mode fiber), thus acting as a wave guide.

Fiber Optic Cable Types:

Now,many fiber optic cable suppliers provide a wide range of quality optical fiber cables with detailed fiber optic cable specifications displayed for your convenience selecting.Many types of fiber optic cable including about 250um bare fiber,tight buffer,large core glass,simplex fiber optic cable,duplex fiber cable,OM3 OM4, Indoor Outdoor cable,loose tube,breakout cable,ribbon cable,LSZH cable,armored cable,ftth cable,figure 8 aerial cable,plastic cable,hybrid and composite cable,adss cable,special cable and so on.

How to Choose Fiber Optic Cable?

Fiber optic cables are preferable to electrical cables over long transmission distances or when an electromagnetic disturbance in an industrial setting might interfere with the signal. Single-mode fibers are required for high-speed, long-distance transmission, while multi-mode fibers are suitable for low speeds and short distances.

Optical fibers have found a widespread use in optical technologies. Today is electronical high-tech applications as for example the Laser Scanning Microscopy, the sensor technology, machine vision, medical laser or military technology use flexible elements in form of optical fibers for light transfer frequently. In most cases, very special requirements to design and function of optical fiber cables are put. We realize custom-made solutions regarding the design of fiber connectors and wavelength, transceiver sale mode behavior, polarization and beam profile.This enables short decisions and high flexibility in the creation of single components as well as system solutions. FiberStore wide-ranging competence is a substantial advantage in the realization of custom solutions. Want to know more customized to fiber optic products(such as 10g fiber cable). FiberStore can supply this service.