Tag Archives: 10G switch

12-Port 10GbE SFP+ Switch Recommendation

FacebookTwitterGoogle+LinkedInRedditTumblrShare

Nowadays, network users tend to have multiple requirements on a single network switch, especially on the functions and ports. Much evidence shows that the 10GbE SFP+ switch is getting more popular with greater demand. Listed below are some typical examples gathered from different forums on what switch they really need:

– “I want a 10G switch (8 or 12 SFP+ ports are better) with several Gigabit RJ45/SFP ports. And the switch must support VLAN and STP/RSTP. Any suggestions?”

– ”Looking for a layer2/layer3 10GbE switch with 8-12 ports and in the US$2,500 range. By the way, I prefer SFP+ rather than copper 10GbE since all the cables I have got are SFP+ DACs.”

– “Help! Need a 12-port or 16-port 10GbE SFP+ switch with relatively cheap price. Any suggestion would be appreciated!”

From the three thread descriptions above, the common Gigabit Ethernet switch can no longer meet the needs of many people. To meet all the requirements mentioned above, several 10G switches are recommended below:

FS S5800-8TF12S 12-Port 10GbE SFP+ Switch

The S5800-8TF12S 12-port 10 GbE SFP+ switch provided by FS.COM can meet all the demands mentioned above. This switch is a high-performance Ethernet switch with several highlights. It offers 8 x 1GbE SFP/RJ45 combo ports and 12 x 10GbE uplink ports in a compact 1RU form factor, which is ideal for hyper-converged infrastructure. In addition, this 10G switch supports both L2 and L3 packet processing. It has very low system power consumption of 65W at most.

FS S5800-8TF12S 12-Port 10GbE SFP+ Switch

D-link DXS-1210-12SC 10GbE SFP+ Switch

D-link DXS-1210-12SC is also a 12-port 10G switch. However, it can not meet all the demands mentioned from the three threads. This 10GB SFP+ switch only has 2 x 10GBASE-T/SFP+ combo ports. While, it has 10 x 10-Gigabit SFP+ Ports. It supports auto surveillance VLAN, L2 and L3 packet processing as well.

Mellanox SX1012X 10GbE SFP+ Switch

Mellanox SX1012X is an ideal 10GbE ToR switch with 12 ports. It is a high-performance small-scale switch in a half-width 1U form factor. It has 12 QSFP+ ports for uplink connection. If you buy this switch, you have to buy the corresponding DACs and optical modules together since it does not have other port for simple copper connection.

Netgear XS712T 10GbE SFP+ Switch

The Netgear XS712T is a 12-port 10-Gigabit copper smart switch with 10 dedicated 10GBase-T copper ports and 2 copper/SFP+ combo ports. The 10GBase-T copper ports can support 10G/1G/100M speeds and the combo ports are used for 10G connection. It is designed for SMB network with advanced L2+/Layer 3 lite features.

FS S5800-8TF12S vs D-link DXS-1210-12SC vs Mellanox SX1012X vs Netgear XS712T

How to choose a proper 10GbE SFP+ Switch for your network? Look at the following chart to compare the four different 10Gb SFP+ switches mentioned above:

10GbE SFP+ Switch comparison

From the comparison chart, it is clear that the biggest differences between these 10GbE SFP+ switches are the port types and numbers they support. You can choose a switch according to your actual needs. Of course, the price is another big factor which may affect your decision.

Conclusion

For the four 10GbE SFP+ switches recommended above, you can choose from the ports and the functions you need. For example, if you need the switch for hyper-converged infrastructure with 12 x 10 Gbps SFP+ ports, the FS S5800-8TF12S is a better choice. By the way, this switch offers a competitive price of US$ 1,899.00.

Related Articles:

Different Applications for 10G SFP+ Cable

Choose 10GBASE-T Copper Over SFP+ for 10G Ethernet

Connectivity Options for 10G Switch/Server Networking

Much of the enterprise market is still running on 1GbE speeds and will be looking to migrate to 10G switch over the next several years. As we know, usually there are three types of connections between switches and servers in 10G networking—SFP+ DAC, fiber cables with SFP+ optics, and 10GBASE-T. And in theses connections, network interface card (NIC), also called network adapter, plays an paramount role. In this post, three connections that upgrade to 10G networking will be explored in details.

Connectivity Options

Today, IT managers can select 10G switch and interconnect options based on specific intended uses—using copper or fiber cables. Each has advantages and disadvantages. Here are the three connection options.

Fiber Cables with SFP+ Transceiver

Fiber optic connections are well suitable for areas that have heavy traffic aggregations like EoR (End of Row) switches. In these connections, SFP+ modules are used together with fiber patch cables on 10G fiber switch, just like the following picture shows. In some SFP+ connections, SFP+ NIC is also needed to link servers and switches such as in MoR (Middle of Row) or EoR (End of Row) connections. Though cabling with fiber in 10GbE fiber switch is great for latency and distance (up to 300m), it also costs more.

fiber

SFP+ Direct Attach Copper Cable (DAC)

Connections with DACs are a good choice for deploying 10G switch within blade server enclosures or racks over short distances. But its reach is limited to 7m and it is not backwards-compatible with existing GbE switches. Of course, an add-in 10GBASE NIC is required for these connections.

dac

10GBASE-T NIC (Network Interface Card)

Nowadays, IT managers have 10GBase-T as a third option for either ToR switch or EoR usage models. 10GBASE-T with Cat 6a UTP cabling makes 10GbE available to a much broader market at a lower cost. It offers the most flexible solution for more data center 10GbE networking applications. Besides, 10G SFP+ copper transceiver also uses Cat 6a or Cat 7 copper cables, but it only supports link length of 30 meters.

10GBASE-T NIC

Comparison

As have mentioned above, 10G connections between servers and switches can be realized with both fiber and copper cables. Here is a simple comparison chart.

10G network

No matter fiber cable, 10G SFP+ copper cable or 10GBASE-T NIC, they can be used in ToR, EoR and MoR connections. Apart from the difference listed in the chart, another factor that should be considered is the cost. Even if the fiber cable has advantages on distance and latency, the use of SFP+ transceiver can add up to 30%-40% to server, switch and storage interface costs. And more SFP+ connections mean more add-in network adapters, which add cost and maintenance overhead.

While the raw cost of the 10GBASE-T is far less than either optical fiber or direct attach twinax copper cables. Cat 6a cable is easy to install and maintain, allowing for customized length, and it can be field installed. The most important point is that Cat 6a cable is compatible with existing gigabit switches. Many networks today already have Cat 6 or Cat 6a cabling in place, so they are 10GBase-T ready. And today’s 10GBase-T network adapters are also cost-effective, enhancing the adoption of 10GBASE-T NIC.

Summary

10G Ethernet is no longer limited to fiber optic media. DAC cable is a popular choice for short distances; 10GBASE-T allows for more economical and easier deployment than ever before. With the price of 10GbE network getting more affordable than ever, many IT managers are sizing the opportunity to upgrade their networks and keep pace with these increasing bandwidth demands. After reading this post, fiber or copper, which would you choose?

Related Article: FS.COM LAN Access 10G Switch Analysis 


Still Have Problems with Quanta LB4M and LB6M 10G Switches?

With the growth of virtualization, cloud-based services and applications like VoIP, video streaming and IP surveillance, various 10G switches with diverse functions spring out on the market. Quanta LB4M and LB6M 10Gb switch are two types popular 10G switches among them. However, there is few user manuals on the Internet, which brings inconveniences for users. This post intends to give a simple introduction to Quanta LB4M and LB6M 10G switches and some solutions for the common problems that may arise in their operating process.

Basis of Quanta LB4M and LB6M 10G Switches

The Quanta LB4M is a modular Gigabit Ethernet backbone switch designed for adaptability and scalability. This switch supports up to 48 Gigabit Ethernet ports to function as a central distribution hub for other switches, switch groups, or routers. And it offers 2 SFP+ interfaces for 10G port on the daughter board. While the Quanta LB6M switch provides 24 10GbE SFP+ ports and 4 1000BASE-T ports, which makes it more popular than LB4M. For these two switches, many users think highly of its performance. But there are also some passive remarks due to the limited documentation.

quanta lb4m & lb6m

Problem & Solution

If you have searched on the Internet, you will find that there are so many questions about Quanta LB4M and LB6M network switch in all aspects like lack of instructive manuals, the operating issues, IP setup problems, etc. Here is a collection of several popular ones in discussion forums and blogs. Hope it will help you.

Quanta LB4M MAC Entry Problem

Use the LB4M in an active/passive configuration for SAN (Storage Area Networking). The two SAN nodes of the user have HA (fail over) and for that it uses a virtual IP which is moved between the two head nodes in case of failure. But the virtual IP MAC is missing from the LB4M switches “mac-addr-table”, which in turn leads to this virtual IP to be mirrored to all ports on that vlan.

Solution: right MAC (Media Access Control) mapping is the core of Ethernet switches. The first choice is to determine whether the MAC address of the switches is valid. Then pick a random address with the same 3-byte prefix as one of your physical MAC addresses and see if the switch accepts it. Another choice is to check the port security where the switch only accepts traffic from a single MAC address, either hard-coded in the config or the first one “seen” on that port.

LB4M Ports Are Deactivated and Backup Image Is Corrupt

Bought a Quanta LB4M and configured a management IP for the Web interface. After rebooting the switch as told, the screen showed that the crc-checksum for both the first and the backup image are corrupt, and another image is needed via the modem.

Solution: try to get upload an image via the modem to fix the problem. And then test it to check if the switch works.

Connect Dell 2848 with SFP to Quanta LB6M?

Dell 2848 switch has four SFP ports, while the Quanta LB6M has 24 10GbE SFP+ ports and 4 1000BASE-T ports. And other devices also need to be connected with. Then how to connect Dell 2848 with Quanta LB6M? The data center is currently running on a 1Gb Cat 6 cables.

Solution: using 10Gb SFP+ LC modules for the Quanta LB6M, 1Gb SFP LC modules for the Dell 2848 and then run MM fiber. Since SFP+ and SFP ports are not compatible, OEM services are another choice to solve this type of problem. FS.COM offers various kinds of customized service to meet customers’ different demands.

How to Avoid the Problems Mentioned Above?

It is undeniable that the Quanta LB4M and LB6M 10G switches are popular among users, which can be seen from the remarks in some forums. But since there is few instructive documents to describe these two types of switches, it will be difficult to solve the problems met in the operating process immediately. FS.COM supplies various kinds of 10G switches to meet the demand of Gigabit access or aggregation for enterprise networks and operators customers. Other 10G optics like 10G transceiver and 10G DAC & AOC are also available. Welcome to visit our website www.fs.com for more information.

Related Article: Compatible Optical Solution for HPE Procurve 3500yl-48G POE Switch (J8693A)