Find Hidden Cables with Cable Wire Locators

Share

Locating buried and hidden lines prior to construction or maintenance projects is critical to ensure the safety of your crew and reducing the potentially costly mistake. Cable locators and wire tracers are specially designed to aid in locating energized and de-energized wires, cable and pipes whether underground or hidden in a wall.

Cable locators are reply on the target having a charge or signal placed on them which is detected by a receiver within the locator, many locators are able to induce a signal onto the line using a transmitter in order to find it. Generally, the target must be metallic in order to conduct the signal, through a sonder or mini-transmitter can be used with plastic pipes. When induce a signal onto a pipe or cable, the transmitter is most commonly connected directly to the line or pipe to be located using signal clamps or clips. The signal will then transmit along the pipe or cable. In areas where there is no access to the line, the transmitter can also induce a signal from above, through the gourd to reach the utility.

Depending upon the application, there is a range of cable locators to be chosen. Some are designed for use for underground lines and pipes while other better suited for the tight confines of a walllikes wire trackers. Cable locators usually include a transmitter and a receiver. A widely used underground cable wire locator is NF-816, which is designed to locate the path of none-energized wirebehind walls or underearth. It can rapidly find the target wire from among plenty of telephone wires or network wires. By comparing the volume of the “tout” sound and the brightness of the signal indicator, you can find the target wire which has the highest volume and brightest indicator.

There are two primary methods of sweeping for lines and pipes with a cable locator: Passive locating involves sweeping an area looking for unknown lines while actively locating searching for a specific line by using either a direct connection or by inducing a signal. When using a cable locator to find underground lines and pipes, the underearth condition has a significant impact on the signal. Lays and camp solids help the signals travel down the line or pipe stronger with less interference than dry soils. So it is necessary to add water to the ground near the transmitter to improve signal strength.

Using Fiber Optic Attenuators to Increase Bit Error Rate

Share

Fiber optic systems transmission ability is based on the optical power at the receiver, which is reflect as the bit error rate, BER is the inverse of signal-to-noise ratio, high BER means poor signals to noise ratio. Too much power or too litter power will cause high bit error rates.

When the power is too high as it often is in short single-mode systems with laser transmitters, you can reduce receiver power with an fibre attenuator. Attenuators can be made by introducing an end gap between two fiber, angular or lateral misalignment, poor fusion splicing, inserting a neutral density filter or even stressing the fiber. Both variable and fixed attenuators are available.

Variable attenuators are usually used for margin testing, it is used to increase loss until the system has high bit error rate. Fixed attenuators may be inserted in the system cables where distances in the fiber optic link are too short and excess power at the receiver causes transmission problems.

Generally, multimode systems do not need attenuators. Multimode source, even VCSELs, rarely have enough power output to saturate receivers. Single mode system, especially short links, often have too much power and need attenuators. For a single mode application like analog CATV systems, the return loss or reflectance is very important. Many types of attenuators suffer from high reflectance, so they can adversely affect transmitters just like highly reflective connectors.

Attenuators can be made by gap loss, or a physical separation of the ends of the fibers, including bending losses or inserting calibrated optical filters. Choose one type of attenuator with good reflectance specifications and always install the attenuator at the receiver end of the link. It is very convenient to test the receiver power before and after attenuation or while adjusting it with your fiber optic meters at the receiver, plus any reflectance will be attenuated on its path back to the source.

When testing the system power, turn on the transmitter, install the attenuator a the receiver, use a fiber optic power meter set to the system operating wavelength. Check to see whether the power is within the specified range for the receiver. For accurate measurements, the fiber attenuators connector types much match the lanch and receive cables to be tested, e.g. LC fibre optic attenuators is needed to work with the LC fiber patch cable, it work in 1250-1625nm range with optional attenuation value from 1dB to 30dB.

If the appropriate attenuators is not available, simply coil some patch cord around a pencil while measuring power with your fiber optic power meter, adding turns until the power is in the right range.

Using Fiber Optic Power Meter to Test Optic Power Level

Share

Fiber optic communication equipment is based on the optical power level between the transmitter and the receiver. The difference of the optical power level between them is the loss of the cabling plant. To measure the power loss of them, an optical power meter is needed to conduct a power loss testing.

fiber optic power meter is typically consist of a solid state detector, signal conditioning circuitry and a digital display of power. To interface to the large variety of fiber optic connectors in use, some form of removable connector adapter is usually provided. The power meter is calibrated at the same wavelength at the source output such as multimode 850 or 1300nm, single mode, 1310, 1490 and/or 1550nm, POF. Meters for POF systems are usually calibrated at 650 and 850nm. The wavelengths used in POF systems.

When performing the test, use the optical power meter adapter to mate to the connector type on the cable. The connectorized reference patch cables must be the same fiber type and size as the cable plant and have connectors compatible to those on the source and cables.

Power meters are calibrated to read in dB reference to one milliwatt of optical power. Some meters of a relative dB scale also, useful for loss measurements since the reference value may be set to 0 dB on the output of the test source. Occasionally, lab meters may also measure in linear units like milliwatts, microwatts and nanowatts.

Optical Power Testing Procedure:
Turn on the power meter to allow time to warm-up.
Set meter to wavelength of the source and “dBm” to measure calibrated optical power.
Clean all connectors and mating adapters.
Attach reference cable or fiber patch cord to source if testing source power or disconnect cable from receiver.
Attach power meter to end of cable and read measured power.

To reduce the measurement uncertainty, you must calibrate the optical power meter according the manufacturers specified intervals. Clean all connectors and remove the meter adapter periodically to clean the adapters and power meter detector. To avoid the stress loss, please don’t bend the fiber optic cables during the testing.

Optic power testing is only one the main part of fiber optic testing. Most test procedures for fiber optic component specifications have been standardized by national and international standards which are converted in procedures for measuring absolute optical power, cable and connector loss and the effects of many environment factors such as temperature, pressure, flexing, etc. Basice fiber optic testing instruments are the fiber optic power meter, optical light source, OTDR and fiber inspection microscope.

CWDM DWDM Transceiver Solutions Provided by FiberStore

Share

CWDM DWDM transceiver modules are used as a part of CWDM or DWDM networks to provide high capacity bandwidth across an optical network. FiberStore CWDM transceivers can operate on 9/125 single-mode fiber to 40km or 80km by using special CWDM channels (1270nm to 1610nm, in steps of 20nm). While DWDM transceiver can support a link length of up to 40km or 80km on single-mode fiber by using special DWDM channels. CWDM DWDM transceivers are worked with a variety of network equipment such as switches, routers, and optical transport devices, to link the ports to the fiber optic network.

CWDM DWDM transceiver must comply with SONET/SDH, Gigabit, Fiber Channel and other communication standards. They are available with a variety of different transmitters and receiver types, allowing users to select the appropriate transceiver for each link to provide the required optical reach over the available optical fiber link.

Dense Wavelength Division Multiplexing (DWDM) solution includes DWDM Xenparks which allow to integrate WDM transport directly with Cisco 10 Gigabit Ethernet switches and routers. The DWDM Xenparks and DWDM optical filter and amplifier products enable the design of a flexible and highly available multi-service network. The DWDM XENPAKs can be used for un-amplified and amplified designs to transmit upto 320 Gigabit over the same pair of SMF. DWDM GBICs allow to integrate WDM transport directly with Cisco Gigabit Ethernet switches and routers. Similar to DWDM Xenpark, the DWDM GBICs interoperable with the same ONS equipment. They can be used for un-amplified and amplified designs to transmit upto 32 Gigabit over the same pair of SMF.

Coarse Wave Division Multiplexing (CWDM) solution allows scalable and easy-to-deploy Gigabit Ethernet (GbE) and Fibre Channel service. The combination of CWDM GBICs and SFPs and CWDM Optical Add/Drop multiplexer modules enables the design of a flexible and highly available multiservice network. CWDM GBIC/SFP solution has two main components: a set of eight different pluggable transceivers and a set of different CWDM Mux Demux or OADM. FiberStore CWDM solution offers a convenient and cost effective solution for the adoption of optical Gigabit Ethernet campus, data center, and metropolitan-area access networks. Our CWDM solutions consist of a set of eight different SFPs, a set of 8 single wavelength/dual channels OADMs, two 4 channels OADM/Mux and an 8 channel CWDM along with a CWDM rack mountable chassis.

CWDM SFP+ module allows enterprises and service providers to offer scalable and easy-to-deploy 10 Gigabit LAN, WAN, and optical transport network service in the network. CWDM 10Gig SFP+ transceivers are 18 center wavelengths available from 1270nm to 1610nm, with each step 20nm.

FiberStore is one of the main DWDM/CWDM system provider that capable to supply the high reliability WDM/CWDM/DWDM components & equipments including CWDM MUX DEMUX, DWDM MUX/DEMUX, CWDM/DWDM transceiver modules, which come with compact size, Low Insertion Loss, bi-directional and environmentally independent features.

Fiber Optical Faceplate Wiki

Share

A fiber optic face plate is a coherent multi-fiber plate, which acts as a zero-depth window, transferring an image pixel by pixel (fiber to fiber) from one face of the plate to the other. Fiber optic faceplates can be applied in FTTH access network, telecommunication networks, CATV networks, data communication networks, which is used to bring fiber to the desk and can be widely used in multi-floor and high buildings. The fiber optic faceplate can be sometime called fiber wall jacks which are available with LC. SC, ST, FC fiber optic adapters, the port number is usually 2, 3 or 4 ports.

Generally, fiber optic wall plates can be divided into three types which is bevel fiber optic plate, hybrid fiber faceplate, FTTH fiber faceplate:

The bevel fiber wall plate is with 45 adapter plug- in/out angle, Hybrid fiber optic faceplate means the fiber adapter types are different from each other which can be SC-ST, SC-ST-LC, or
SC/ST/FC/LC, each adapter style is for one port.

Common Features of bevel fiber wall plate and hybrid fiber optic faceplate includes:
Size is 86*86mm
ABS plastic material
No additional insertion loss, simple operation, low construction intensity
The snap-in module is easy to install with straight tip style fiber optic connector
All fiber adapters are “universal” to support either multimode or single mode fiber connectors

Application:
FTTH access network
Telecommunication Networks
CATV Networks
Data communications networks

Except these two types, there is also another type which is the FTTH fiber optic faceplate, which is mainly designed for applications of FTTH, FTTB, FTTC, telecommunication networks and CATV4,Local area network. Check out some features of these FTTH fiber optic faceplate.
Indoor or outdoor rated
Available in 1×4, 1×8, 1×16 splitter as well as 2×4, 2×8, 2×16 splitter
Max. Up 16pcs of FTTH drop cable or pigtails
Suitable for wall-mounting or pole mounting application

Fiber wall plate is also used to create a fiber optic network at home. Besides the switches between different floor, fiber wall plate/jack and the pre-terminated fibers are needed. Look at the specs for the optical port on the switch. If the optical port is a pluggable device, you need to get its P/N and look up the spec. Most of the fiber sold on FiberStore that is conecterized, is patch chords. Fiber patch cord has very little strain relief in them. So take care when you pull them in your new installation that you do not damage them.

3G HD Digital Video SFP Transceivers from FiberStore

Share

As HD content becomes the norm in video and broadcasting industry, the limitation to transporting HD video on a network have a bigger impact on budget, responding to this demand in HD video transmission, FiberStore releases the 3G HD digital video SFP transceiver families address issues raised by the data-scrambling algorithms used in DV, enabling digital video to be transported over optical network using standard transceivers,” says Dan Ligon, director and principal analyst for SMPTE. “We are ensuring that we meet this demand in a highly-efficient and cost-effective manner, while providing a superior service experience to our customers.

Digital Video SFP transceivers are designed to affordably transmit SDI, HD-SDI, or DVB digital video component signals over fiber using standard optical transceivers. It is a dual channel optical transmitter module designed to transmit optical serial digital signals as defined in SMPTE 297-2006. It supports from 50 Mbps to 3Gbps and is specially designed for transmitting SMPTE 424M/292M/29M/259M pathological patterns video with reach of 10, 20, 40km over single mode fiber.

The digital video SFP transceiver offers a direct and affordable solution to the problems of digital video optical transport. They allow the transport of SDI, HD-SDI, or DVB ASI component video signals over any optical transport system that employs MSA standard optical transceivers.

FiberStore is a leading global suppliers of optoelectronic device solutions. We designs, develops, manufacturers and market a diverse portfolio of high performance, cost-competitive fiber optic communication products for all application. Our broad fiber optic portfolios includes CWDM DWDM network components, bulk fiber cables, fiber patch cable, cable management equipment, as well as series fiber testers & tools.

CWDM Solutions Offered by FiberStore

Share

As broadband has unveiled a new world for subscriber, full of advanced capabilities and faster speeds. Your challenge is to meet their demands without compromising your budget. Because of its distance, speed and bandwidth potential, fiber optics has become the choice for many service providers. Fiber optic connections typically requires two strands of fiber – one for transmitting and one for receiving signals. But how to do if you need to add services or customers, but you’ve exhausted your fiber lines?

Thanks to CWDM, coarse wave division multiplexing (CWDM) is a method of combining multiple signals on laser beams at various wavelengths for transmission along fiber optic cables. The number of channels is fewer than in dense wavelength division multiplexing (DWDM) but more than in standard WDM.

CWDM has many advantages over DWDM technology in terms of system costs, set-up, maintenance, and scalability. CWDM is a technology which multiplexes multiple optical signals on a single fiber optic stand by using different wavelengths, or colors, of laser light to carry the different signals.

Typical CWDM solutions provide 8 wavelengths capacity enabling the transport of 8 client interface over the same fiber. However, the relatively large separation between the CWDM wavelengths allows expansion of the CWDM network with an additional 44 wavelengths with 100GHz spacing utilizing DWDM technology, thus expanding the existing infrastructure capacity and utilizing the same equipment as part of the integrated solution.

A single outgoing and incoming wavelength of the existing CWDM infrastructure is used for 8 DWDM channels multiplexing into the original wavelength. DWDM Mux Demux and optical amplifier if needed.

The typical CWDM spectrum supports data transport rates of up to 4.25Gbps, CWDM occupies the following ITU channels: 1470nm, 1490nm, 1510nm, 1530nm, 1550nm, 1570nm, 1590nm, and 1610nm, each separated from the other by 20nm. PacketLight can insert into any of the of the 4 CWDM wavelengths (1530nm,1550nm,1570nm and 1590nm), a set of additional 8 wavelength of DWDM separated from each other by only 0.1nm. By doing so up to 4 times, the CWDM network capability can easily expand by up to 28 additional wavelengths.

With FiberStore’s compact CWDM solutions, you can receive all of the above benefits and much more (such as integrated amplifiers, protection capabilities, and integration with 3rd party networking devices, etc.) in a cost effective 1 U unit, allowing you to expand as you grown, and utilize your financial as well as physical resources to the maximum. FiberStore provides all the component involved in the process, such CWDM MUX DWMUX, CWDM OADM, even CWDM SFP transceivers.

Corning Fiber Optic Cable: World Leader in Fiber Optics Technology

Share

From the time they introduced fiber optic technology in the 1970, corning has been at the forefront of fiber optic technology, forming the designs, products and guidelines that have become standard in the industry today. Corning’s broadened product range means they are now an industry leading fiber optic cable manufacturers in a number of customer focused solutions including:

Corning fiber optic cable
Corning connectors and related hardware
Corning distributed antenna systems (DAS)
Harsh environments products of Corning

As the inventors of optical fiber in 1970, innovation is at the core of Corning’s successful history of technology and the foundation of providing compatible solutions that meet our customer’s ever-changing needs. Such solutions include FiberStore solutions that provide the successful and efficient foundation of your data center, local area, intelligent traffic system and industrial networks.

After half a year after Corning fist debuted the “Thunderfolt Optical Cable” at CES 2013 in January alongside a USB standard solution dubbed “USB 3. Optical Cables”, Corning announced that its Thunderbolt Optical Cables are the first completely optical fiber products to receive Intel’s certification.

Corning’s all-optical Thunderbolt cable use the company’s ClearCuve VSDN optical fiber technology to deliver high data speeds over longer distances than traditional copper cables. The optical fiber version are also 50 percent smaller and 80 percent lighter than their copper counterparts.

Corning plans to make the cable available at various lengths starting at 10 meters, through final products specifications have yet to be revealed.

Corning has put over 3,000,000,000 US Dollars investment in China; it has 8 manufacturing factories in China with around 3000 workers. Corning Inc China headquarter is located in Shanghai. For fiber optic cable business, it has one optical fiber company and one fiber optic cable company in Shanghai, which is fully run and invested by Corning. Meanwhile it has two holding companies for fiber optic cable business in China, one is in Chengdu and other is in Beijing. Not only on fiber optic cable business, Corning also provides LCD products and ceramic products used on cars in China. FiberStore is proud to offer an extensive line of Corning products! Whether your application is indoors, outdoors, aerial, riser or plenum, you’re sure to find the perfect fiber optic cable for your installation among Coring’s Optical Fiber Communication product lines.

MPO/MTP Fiber Interconnection Products FAQs

Share

The increasing demand on today’s higher fiber counts has exploded the development of multi-fiber technology. FiberStore is one of the main manufacturing of MPO/MTP fiber patch cable and cassettes, and many other MPO/MTP fiber interconnection products, which engineers unique MTP solutions using 12, 24, 48 and even 72 fiber MTP ferrules.

What is an MTP Trunk Cable?
An MTP trunk cable provides 12 to 144 fibre connectivity, by using 12-fibre push/pull optical connectors, it minimized errors and reduced spaces. The MTP trunk cable allows for lower bend radii and smaller slack loops. It enables up to 6x the cable tray capacity over traditional bulkier cabling solutions, saving up to 65 percent space. MPO trunk cable features round furcation legs that provide easy routing and improved storage. With the small profile furcation plug, it allows stress free cable mounting, leaves no legs outside the housing and shipped with strain-relief mounting cradles.

What is MTP Extender/MTP Extension Trunk?
The MTP extension Trunk extend subsets of links from zone distribution into equipment zones, which feature pinned (male) MTP connector on one end and non-pinned (female) MTP connectors on the other. It pinned MTP side mates with trunks via MTP connector panels, while not pinned MTP side plugs into modules or harnesses.

What is MTP couplers?
MTP couplers are simple plastic rectangles that hold two MTP connectors together. One cable going into an MTP coupler needs to have a male connector. The other cable must have a female connector. MTP couplers can be either key-up to key-up, or key-up to key-down. MTP cable has a clip on the top of the connector. On a key-up to key-up coupler, the clips are pointed in the same direction on both of the cables. On a key-up to key-down coupler. On a key-up to key-down coupler, the clips are on opposite sides. This also affects the polarity of the signal. Key-up to key-up couplers invert polarity. Key-up to key-down couplers retain the original polarity. This was initially counter-intuitive to me. It made sense once I thought about it though.

What is MTP harness?
An MTP harness breaks out 12 fiber MTP terminations into LC duplex connectors. It connects to trunks through a pinned MTP connector plug into dual fiber electronics ports with LC uniboot duplex connectors. It is occupying less space than 6 duplex jumpers improve airflow for cooling efficiency. By easing handling of cable connections on high-fibre count SAN directors and switch blades, it enables higher density in equipment patch panels. MTP harnesses are available in two lengths: short harness legs for minimal cable slack and long harness legs for mounting flexibility within a cabinet.

CWDM DWDM Networking Solutions

Share

Wavelength division multiplexing is a cost effective and efficient way for expanding the fiber optic transmission capacity, because it allows using current electronics and current fibers and simply shares fibers by transmitting different channels at different color (wavelength) of light.

Wavelength Division Multiplexing, WDM is a technique that multiplexing several signals over a single fiber optic cables by optical carriers of different wavelength, using light from a laser or a LED. According to the number of wavelengths it supports, there are Coarse Wavelength Division Multiplexing (CWDM) and Dense Wavelength Division Multiplexing (DWDM).

CWDM was introduced as a low-cost approach to increasing bandwidth utilization of the fiber infrastructure. By using several wavelengths/colors of the light, 18 channels are viable and defined in the ITU-T standard G.694.2. CWDM systems typically provide 8 wavelengths, separated by 20nm, from 1470nm to 1610nm.

Benefits of CWDM
Passive equipment that uses no electrical power
Extended Temperature Range (0-70C)
Much lower cost per channel than DWDM
Scalability to grow fiber capacity with little or no increased cost
Protocol Transparent
Simple to install and use

Drawbacks of CWDM
16 channels may not be enough
Passive equipment offers no management capacities

DWDM packing WDM channels denser than in CWDM systems, 100 GHz spacing (approx. 0.8nm), more channels and higher capacity can be achieved using DWDM. IUT-T recommendation G.694.1 defines the DWDM channels spectrum. DWDM comes in two different versions: an active solution and a passive solution. An active solution is going to require wavelength management and it a good fit for applications involving more than 32 lines over the same fiber. In most cases, passive DWDM is looked at as a more realistic alternative to active DWDM.

Benefits of DWDM
Up to 32 channels can be done passively
Up to 160 channels with an active solution
Active solutions typically involve optical amplifiers to achieve longer distances

Drawbacks of DWDM
DWDM is very expensive
Active solutions require a lot of set-up and maintenance expense
“Passive” DWDM solution still requires power

Optical Add/Drop Multiplexing (OADM)
By optical add/drop multiplexing techniques, wavelength channels may be added and dropped at intermediate nodes using passive optical components only. Optical Add/Drop Multiplexers are used in WDM Systems for multiplexing and routing fiber optic signals. They can multiplex several low-bandwidth streams of data into a single light beam, and simultaneously, it can drop or remove other low-bandwidth signals from the stream of data and direct them to other network routers. There are CWDM OADM and DWDM OADM.

FiberStore offer a wide range of WDM optical networking products that allow transport of any mix of service from 2Mbps up to 200Gbps. Our highly reliable WDM/CWDM/DWDM products include CWDM multiplexers and demultiplexer, DWDM Multiplexers and demultiplexers, CWDM & DWDM Optical Add-drop Multiplexer, Filter WDM modules, CATV amplifier, OEO converters as well as many other most demanding CWDM DWDM networking infrastructure equipment.