Category Archives: Optical Transponder

5 Concepts Help Easily Get WDM System

FacebookTwitterGoogle+LinkedInRedditTumblrShare

The Wavelength Division Multiplexing (WDM) system is a passive, optical solution for increasing the flexibility and capacity of existing fiber lines in high-speed networks. By adding more channels onto available fibers, the WDM System enables greater versatility for data communications in ring, point-to-point, and multi-point topologies for both enterprise and metro applications. Do you know about WDM system? 5 concepts provided in this blog may help you easily get it.

Optical Transmission
Optical transmission is the conversion of a digital stream of information to light pulses. The light pulses are generated by a laser source (LED or vessel) and transmitted over an optical fiber. The receiver converts the light pulses back to digital information.

Optical Transmission

Wavelength Division Multiplexing
WDM is based on the fact that optical fibers can carry more than one wavelength at the same time. The lasers are transmitting the light pulses at different wavelengths that are combined via filters to one single output fiber. The device used to combine wavelengths is called multiplexer and the device used to separate wavelengths is called demultiplexer, which are the two most basic component in WDM system.

Wavelength Division Multiplexing

Optical Amplifiers
An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. Optical amplifiers boosts the attenuated wavelengths and are more cost efficient than electrical repeaters. Without amplifiers the reach is limited to 80-100km before electrical regeneration. Amplifier stations typically each 80-100km.

optical-amplifiers
Depending on signal types and fiber characteristics, amplifiers are used in DWDM networks and increases the reach of the optical signals up to 3000 km. Amplifiers are an basic building block for a powerful DWDM network.

Optical Amplifiers

Transponder
Transponders provides wavelength conversion from client to WDM signal. A transponder maps a single client to a single WDM wavelength. The digital framing of a line signal from a transponder provides service monitoring, management connectivity and increased reach. The broad range of available transponders enables cost efficient solutions for both CWDM & DWDM.

transponder

Optical Add Drop Multiplexer
The main function of an optical multiplexer is to couple two or more wavelengths into the same fiber. If a demultiplexer is placed and properly aligned back-to-back with a multiplexer, it is clear that in the area between them, two individual wavelengths exist. This presents an opportunity for an enhanced function, one in which individual wavelengths could be removed and also inserted. Such a function would be called an Optical Add Drop Multiplexer (OADM). OADM is used for increased flexibility in the optical paths. Services can be redirected upon failure or capacity constraints and capacity can be increased dynamically per node.

optical-add-drop-multiplexer

Conclusion
Multiplexer and demultiplexer are the most basic component in WDM system. If your transmission distance is more than 100 km, an optical amplifier is necessary. If your client wavelength isn’t available for WDM applications, you may need a transponder to convert it to WDM available wavelength. Want to achieve a more flexible, just choose to use a OADM. Besides these, sometimes, a dispersion compensation module is also needed to fix the form of optical signals that are deformed by chromatic dispersion and compensates for chromatic dispersion in fiber that causes the light pulses to spread and generate signal impairment. Do you get WDM system? Just start to build your own WDM system now!

WDM Networks: The Transponder

In optical fiber communications, WDM Transponder sends and receives the optical signal from a fiber. A transponder is typically characterized by its data rate and the maximum distance signal travels.

The transponders are of two types namely transmit transponders and receive transponders. The function of transmit transponder is to convert the incoming optical signal into pre-defined optical wavelength. The transponder (transmit) first converts the optical signal to an electrical signal and performs reshaping, retiming and retransmitting functions, also called 3R functions. The electrical signal is then used to drive the laser, which generates the optical signals having optical wavelength. The output from the all transponders (transmits) is fed to combiner in order to
combine all optical channels in optical domain. In receive transponder, reverse process takes place.

Individual wavelengths are first split from the combined optical signal with the help of Optical Splitter and then fed to individual receive transponders, which convert the optical signal to electrical, thus 3R function and finally convert the signal back to the optical. Thus the individual channels are obtained. As the output of the transponder is factory set to a particular wavelength, each optical channel requires unique transponder.

Often, fiber optic transponders are used for testing interoperability and compatibility. Typical tests and measurements include jitter performance, receiver sensitivity as a function of bit error rate (BER), and transmission performance based on path penalty. Some fiber optic transponders are also used to perform transmitter eye measurements.

The transponder according to the invention utilises delays that are switchable between different optical fiber lines, so as to be able to select many different lengths without the necessity of re-designing the same transponder. Moreover, the transponder according to the invention uses a Single Side Band (SSB) optical component which produces an optical shift of the frequency of the radar signal, that avoids the drawbacks and solves the problems of the traditional electrical systems. The transponder according to the invention is comprised in multifunctional radar systems and allows at least three different uses: the first is the systems calibration on the basis of moving targets that are simulated in the production step,the second one is the performances test of a radar that has already been calibrated in the step of the system acceptance by the client (Field Acceptance Test), and the third one is the support to the identification of possible faults and nonworking partsof the radar, during the operation life of the same radar system. The transponder of the invention comes out to be easily producible and transportable.

An integrated transponder will also be needed: one transponder that couples to 10 individual fibers at a much lower cost than 10 individual transponders. With a super-channel transponder, several wavelengths are used, each with its own laser, modulator and detector. Photonic integration is the challenge to achieve a cost-effective transponder.

The Difference Between Fiber Optic Transponder And Fiber Optic Transceiver

A transponder and transceiver are both functionally similar devices that convert a full-duplex electrical signal in a full-duplex optical signal. The difference between the two is that fiber transceivers interface electrically with the host system using a serial interface, whereas transponders use a parallel interface. So transponders are easier to handle lower-rate parallel signals, but are bulkier and consume more power than transceivers.