Category Archives: Network Switches

Network OS Systems for Bare Metal Switch

FacebookTwitterGoogle+LinkedInRedditTumblrShare

As you may know that a network switch with no network operating system (NOS) is referred to as a bare metal switch. Unlike a white box switch with vendor’s own or 3rd party already loaded NOS, a bare metal switch allows you to load a network OS according to your own will. After installing the NOS, these two types of switches are normally regarded as the same. Then, how to choose network OS systems for bare metal switches? Listed below are three popular choices, namely Cumulus Linux, IP Infusion OcNOS™ and Pica8 PICOS.

Option 1: Network OS Cumulus Networks Cumulus Linux

Cumulus Linux is a powerful open network OS designed by Cumulus Networks to help build and operate large data center networks. Therefore, the Cumulus Linux is a perfect match for a data center switch which operates in bigger networks such as enterprise, data center and metro Ethernet scenarios. It is a true Linux distribution with a hardware abstraction layer that runs on a variety of commodity hardware. Cumulus Linux uses automated tools to manage the network infrastructure and hopes to automate the configuration of network switches with these existing tools.

Cumulus Linux network OS

Additionally, Cumulus Linux offers economical scalability and choice flexibility to run multiple network paths without the need for multiple switches. The main features of Cumulus Linux lie in the following aspects:

  • Economical Scalability: Customers can get increased operational efficiency with commodity hardware and a standardized Linux stack.
  • Built for the Automation Age: This Debian-based Linux distribution offers a completely open architecture and is designed for easy automation.
  • Standardized Toolsets: It allows open source and commercial Linux applications to run natively. You can use your own automation or other tools to improve efficiency and multiply the number of switches per operator.
  • 70+ Hardware Platforms for Choice: You can choose compatible hardware based on your needs and your budget flexibly.

Cumulus Linux enables modern data center architectures while providing a transition path for traditional data center architectures. It supports layer 2, layer 3 and overlay architectures. This open architectural approach enables a wide range of solutions such as Clos, L3 network, L2 network, campus expansion, out of band management, etc.

Cumulus Linux architecture

Option 2: Network OS IP Infusion OcNOS™

OcNOS™ is designed to address the needs of public, private or hybrid cloud networks. It offers Carrier-grade network OS for bare metal switches. It includes many advanced capabilities such as extensive switching and routing protocol support, MPLS, SDN, etc.

In addition to providing industry standard CLI, OcNOS™ supports all standard MIBs , other standard operation and management tools as well. The main features are:

  • Support Multiple Deployments: The several abstraction layers allow seamless portability across diverse network hardware.
  • Modular Software Design: This design can make it customized, built and packaged with minimal software features to reduce CapEx and device footprint.
  • Wide Interoperation: With CLI and SNMP management, the the OcNOS-based network node is easy to operate and interoperate with another vendor node.
  • Support for disruptive networking technologies: It enables SDN support through OpenFlow and can provide custom programmable network operations.

Option 3: Network OS Pica8 PICOS

The PICOS is also an open Linux-based network OS built on the robust Debian Linux environment for bare metal switches. It supports all major L2 and L3 switching. What’s more, it can leverage a vast array of standard Linux tools and supports IPv4 and IPv6 static routing as well.

In addition to the basic features mentioned above, the PICOS supports other functions depending on its two different editions. For PICOS enterprise edition, it supports CrossFlow dual control plane technology for improved OpenFlow integration, scale, and management. For PICOS SDN edition, it uses OpenFlow to control MPLS, GRE, NVGRE or VXLAN tunnels, delivering on the promise of open programmability.

Conclusion

From all the above, you may have a general understanding of the three main network OS systems. You can choose a proper one according to your actual needs. For example, if you need a Debian-based Linux distribution NOS with Clos solution for a 40GB switch, Cumulus Linux is a wise choice.

Related Articles:

How to Select Transceivers for White Box Switch?

Network OS Comparison: Open Source OS or Proprietary OS

12-Port 10GbE SFP+ Switch Recommendation

Nowadays, network users tend to have multiple requirements on a single network switch, especially on the functions and ports. Much evidence shows that the 10GbE SFP+ switch is getting more popular with greater demand. Listed below are some typical examples gathered from different forums on what switch they really need:

– “I want a 10G switch (8 or 12 SFP+ ports are better) with several Gigabit RJ45/SFP ports. And the switch must support VLAN and STP/RSTP. Any suggestions?”

– ”Looking for a layer2/layer3 10GbE switch with 8-12 ports and in the US$2,500 range. By the way, I prefer SFP+ rather than copper 10GbE since all the cables I have got are SFP+ DACs.”

– “Help! Need a 12-port or 16-port 10GbE SFP+ switch with relatively cheap price. Any suggestion would be appreciated!”

From the three thread descriptions above, the common Gigabit Ethernet switch can no longer meet the needs of many people. To meet all the requirements mentioned above, several 10G switches are recommended below:

FS S5800-8TF12S 12-Port 10GbE SFP+ Switch

The S5800-8TF12S 12-port 10 GbE SFP+ switch provided by FS.COM can meet all the demands mentioned above. This switch is a high-performance Ethernet switch with several highlights. It offers 8 x 1GbE SFP/RJ45 combo ports and 12 x 10GbE uplink ports in a compact 1RU form factor, which is ideal for hyper-converged infrastructure. In addition, this 10G switch supports both L2 and L3 packet processing. It has very low system power consumption of 65W at most.

FS S5800-8TF12S 12-Port 10GbE SFP+ Switch

D-link DXS-1210-12SC 10GbE SFP+ Switch

D-link DXS-1210-12SC is also a 12-port 10G switch. However, it can not meet all the demands mentioned from the three threads. This 10GB SFP+ switch only has 2 x 10GBASE-T/SFP+ combo ports. While, it has 10 x 10-Gigabit SFP+ Ports. It supports auto surveillance VLAN, L2 and L3 packet processing as well.

Mellanox SX1012X 10GbE SFP+ Switch

Mellanox SX1012X is an ideal 10GbE ToR switch with 12 ports. It is a high-performance small-scale switch in a half-width 1U form factor. It has 12 QSFP+ ports for uplink connection. If you buy this switch, you have to buy the corresponding DACs and optical modules together since it does not have other port for simple copper connection.

Netgear XS712T 10GbE SFP+ Switch

The Netgear XS712T is a 12-port 10-Gigabit copper smart switch with 10 dedicated 10GBase-T copper ports and 2 copper/SFP+ combo ports. The 10GBase-T copper ports can support 10G/1G/100M speeds and the combo ports are used for 10G connection. It is designed for SMB network with advanced L2+/Layer 3 lite features.

FS S5800-8TF12S vs D-link DXS-1210-12SC vs Mellanox SX1012X vs Netgear XS712T

How to choose a proper 10GbE SFP+ Switch for your network? Look at the following chart to compare the four different 10Gb SFP+ switches mentioned above:

10GbE SFP+ Switch comparison

From the comparison chart, it is clear that the biggest differences between these 10GbE SFP+ switches are the port types and numbers they support. You can choose a switch according to your actual needs. Of course, the price is another big factor which may affect your decision.

Conclusion

For the four 10GbE SFP+ switches recommended above, you can choose from the ports and the functions you need. For example, if you need the switch for hyper-converged infrastructure with 12 x 10 Gbps SFP+ ports, the FS S5800-8TF12S is a better choice. By the way, this switch offers a competitive price of US$ 1,899.00.

Related Articles:

Different Applications for 10G SFP+ Cable

Choose 10GBASE-T Copper Over SFP+ for 10G Ethernet

FS 24-Port Managed Switch With Both Fanless & Stackable Features

From an application point of view, the current market demand for products is becoming more and more multi-functional. For example, different industries have different functional requirements for network switches, especially for the currently popular 24-port managed switch. You may often see the questions on Reddit seeking for help like the situations below:

– “I am looking for a quiet or fanless switch to install in my office. It is better to have at least 24 ports and support SFP+ uplinks. Any suggestions on where to buy one?”

– “Looking for a 24-port stackable switch for home lab. It would be nice if it could support 10G interconnection. Any advice would be appreciated!”

It seems that a 24-port fanless switch or stackable switch is a popular trend for network construction. Then, can I own a 24-port managed switch with both the characteristics of these two switches? Yes, FS S3900-24T4S 24-port managed switch can meet your needs.

FS S3900-24T4S 24-Port Managed Switch Meets All Your Needs

Key Features: Fanless & Stackable in Design

The key features of FS S3900-24T4S 24-port managed switch are that it is not only a fanless switch but also a stackable switch.

The fanless design of S3900-24T4S ensures noiseless operation and increases the reliability and energy efficiency of the system. And the stackable feature of S3900-24T4S simplifies network administration. Whether it operates alone or “stacked” with other units, there is always just a single management interface for the network administrator to deal with. This simplifies the setup and operation of the network. The S3900-24T4S 24-port managed switch is almost an omnipotent switch for choice under many circumstances.

S3900-24T4S 24-port managed switch

In addition to the two main features mentioned above, this 24-port managed switch has other significant features.

Specification of S3900-24T4S 24-Port Managed Switch
S3900-24T4S-specification

How to Install and Use FS S3900-24T4S 24-Port Managed Switch?

Installation Tips:
  • Temperature: Check if the operation temperature is within the specified operating temperature range. Make sure to keep a sound air flow of the rack environment.
  • Avoid additional weight: Do not place any other device or equipment on this switch.
  • Grounding: Keep this switch well grounded.

Note: If you want to mount this switch on a rack, pay attention to the circuit capacity as well. Check whether the circuit will be overload or not before installing S3900-24T4S on the rack. If the circuit can not bear the load of the switch, do not install it at your own will.

How to Use S3900-24T4S 24-Port Managed Switch:

For copper connection: You can use Cat5 cable for 10/100Base-T connection and use Cat5e, Cat6, Cat6a or above to reach 1000Base-T connection.

For fiber connection: Since the S3900-24T4S 24-port managed switch has four 10G SFP+ ports, you can use a variety of 10G optical transceivers and cables to connect with other network devices. The supported transceivers include 10G SFP+, BiDi SFP+, CWDM SFP+, DWDM SFP+, 10GBASE-T SFP+, etc. While the supported cables could be 10G DAC cable and AOC cable. In addition, this switch allows backwards compatibility on 1G SFP. All third-party modules and DAC/AOC cables can be used on the SFP+ ports of this switch, which can save a lot of deployment costs.

Conclusion

From all the above, you may have a general understanding of FS S3900-24T4S 24-port managed switch. Endowed with so many powerful features such as fanless and stackable design, this switch offers unique advantages over many switches in the market. If you want a switch with both fanless and stackable features, FS S3900-24T4S is a priority choice!

Related Articles:

What Is Link Aggregation and Link Aggregation Switch?

FS.COM S3800 Series Stackable Switch Solution

What Is Layer 3 Switch?

Layer 3 switch has roused much attention with the quick renovation of the network upgrade. It plays an important role in data exchange inside a large local area network. Then, what is layer 3 switch? Read this post to learn more about layer 3 switch involved with the comparison of layer 3 switch vs layer 2 and layer 3 switch vs router.

What Is Layer 3 Switch and Layer 3 Switching?

What is layer 3 switch? Simply to say, a layer 3 switch is a network switch with some router functions. The most important purpose of the layer 3 switch is to speed up the data exchange within a large LAN. The routing function is also used for this purpose. It can accomplish one route and multiple packet forwarding processes.

what is layer 3 switch

Regular processes such as packet forwarding are implemented by hardware at high speed, while functions such as routing information update, routing table maintenance, route calculation, and route determination are implemented by software. Layer 3 switching technology is layer 2 switching technology combining with layer 3 forwarding technology. The traditional switching technology is operated in the second layer of the OSI network standard model (the data link layer), and the third layer switching technology implements the high-speed forwarding of data packets in the third layer of the network model. It not only realizes the network routing function but also achieves optimal network performance according to different network conditions.

Layer 3 Switch vs Layer 2

Why Is Layer 3 Switch Popular?

Normally, for the sake of safety and management with convenience, a LAN is divided into small LANs according to different factors such as function or geography to reduce the harm of broadcast storms. Therefore, VLAN technology is applied in a large number of networks. However, communication between different VLANs must be forwarded through routers. Such inter-network access is limited because of the limited number of ports and the slower routing speed. Based on this situation, a three-layer switch emerges. The layer 3 switch is designed for IP. The interface type is simple and has strong layer 2 packet processing capability. It is very suitable for data routing and switching in large LANs. In the third layer of the protocol, the function of the traditional router is replaced or partially completed, and at the same time it has almost the speed of the second layer exchange, and the price is relatively cheaper.

Advantages of Layer 3 Switch

From the paragraph above, you may have a blurry concept when it comes to layer 3 switch vs layer 2. Don’t worry. Here are the main advantages of layer 3 switch when comparing layer 3 switch vs layer 2:

  • Function: A layer 2 switch can only switch packets from one port to another, whereas a layer 3 switch is capable of both switching as well as routing.
  • MAC vs. IP Address: Layer 2 switches use devices’ MAC addresses to redirect data packets from source port to destination port. While, layer 3 switches use IP addresses to link various subnets together utilizing special routing protocols.
  • Applications: Layer 2 switch is hardware-based switch and uses ASICs (application specific integrated circuits) to maintain MAC address table. It uses layer 2 switching to break up a large domain into multiple smaller domains. Layer 3 switch is a mix of switch and router, which is commonly used for routing within virtual LANs (VLANs).
  • Speed: Normally, switches operating at layer 2 take less time than that operating at layer 3. Layer 2 switches just need to assign MAC addresses to reroute packets from source port to destination port in layer 2 switching.

Layer 3 Switch vs Router

In addition to layer 2 switch, router is another concept which is usually referred to when concerned with layer 3 switch. This is obvious to find from layer 3 switch definition. Then, what are their differences when comparing layer 3 switch vs router? Look at the following aspects:

  • Main function: The main function of a router is the routing function. The same is true for layer 3 switch as well. It is still a switch product but with some basic routing functions. Its main function is still data exchange.
  • Main applicable environment: The routing function of a layer 3 switch is usually relatively simple, because it is mainly a simple LAN connection. The router is designed mainly to meet different types of network connections including LANs and WANs. Its main function is routing and forwarding.
  • Differ in performance: Technically, routers and layer 3 switches have significant differences in packet switching operations. Routers typically perform packet switching by a microprocessor-based software routing engine, while layer 3 switches perform packet switching through hardware.

Conclusion

After all the above, you may get clearer about “what is layer 3 switch” and the main difference between layer 3 switch vs layer 2 and layer 3 switch vs router. In short, a layer 3 switch can implement both switching as well as routing function. It can define a plurality of ports as one virtual network, and it has no limit to the transmission bandwidth between networks.

What Is an Ethernet Switch and How to Use It?

Nowadays, Ethernet switch has become an important part in data center or computer networking to meet different needs. You may heard about it but not so familiar with it. Then, what is an Ethernet switch? How does an Ethernet switch work? Let’s find out the answers in the following text.

what is an ethernet switch

What Is an Ethernet Switch?

Ethernet switch, the most common form of network switch, is a computer networking device used in Ethernet to connect various Ethernet devices. It connects devices together by using packet switching to receive, process, and forward data from one source device to another destination device.

Ethernet Switch Types

There are various types of Ethernet switches designed for different needs. Normally, they are divided into two main categories, namely, modular switch and fixed configuration switch. The former one allows you to add expansion modules into the switch as needed while the latter one is not expandable with a fixed number of ports.

Nowadays, fixed configuration switches are the mostly used. They can come in various different speeds with particular names such as fast Ethernet switch with a speed of 10/100 Mbps, Gigabit Ethernet switch of 10/100/1000 Mbps, 10GbE switch of 10/100/1000/10000 Mbps. Currently, Gigabit Ethernet switch is still the most common one and is the most widely used switch among its kind. In additional, 10GbE switch is also very popular for its higher transmission speed of up to 10 Gbps and a relatively not expensive price. Of course, there are other switches of 25G, 40G or even 100G for you to choose as well. You can choose the best Ethernet switch according to your actual needs.

How Does An Ethernet Switch Work?

As a hardware device, Ethernet switch centralizes communications among multiple connected Ethernet devices in one local area network (LAN). Normally, multiple data cables are plugged into an Ethernet switch to enable communication between different networked devices. Then, the Ethernet Switch manages the flow of data across the network by transmitting a received network packet only to the one or more devices for which the packet is intended. An Ethernet switch can identify every device connected to it and direct the traffic flow of the device, which maximizes the security and efficiency of the network. Therefore, it is more intelligent and efficient than an Ethernet hub which is unable to distinguish different recipients.

how-does-an-ethernet-switch-work

How to Choose and Use an Ethernet Switch?

How to Choose an Ethernet Switch?

As for how to choose an Ethernet switch, there are different factors you should consider:

  • Transmission speed: Although there are different transmission speeds for you to choose, you still need to use an Ethernet switch according to the actual speed you need.
  • Number of ports: Fixed configuration switches typically come in 5, 8, 10, 16, 24, 28, 48, and 54-port configurations. You should choose a switch with the number of ports equal to, or greater than that of computers you are connecting.
  • Network infrastructure: For small network of up to 50 users, one Ethernet switch might enough. While, additional switches are needed if more users are added in.
  • Specific feature: If you have special requirements for your switch, you can search it accurately. For example, you can only search managed or unmanaged switch for precise localization among various switches.
  • Reliable vendor: There are many popular brands of networking equipment, such as Cisco, 3com, Linksys, FS, etc. Just choose a company you trust and buy the switch you want.
  • Price difference: Normally, price might be the priority over everything when choosing a product. You can search a certain switch of the same external conditions and then compare them in price. If the functions are nearly the same, you can choose a relatively cheaper one.
How to Use an Ethernet Switch?

Speaking of how to use an Ethernet switch, you can follow the guidance below:

  • Configure your switch: Set up the IP address for the switch with switch manual.
  • Configure your switch with right VLANs setup if needed. If multiple VLANs are being used, make sure the computers are on the correct VLAN.
  • Log into your switch to hard code each port if necessary.

For more details, you can refer to the post of how to use a network switch.

Conclusion

After the introduction of “What is an Ethernet switch?” and “How does an Ethernet switch work?” above, one can have a general understanding of an Ethernet switch. In short, An Ethernet switch is a telecommunication device used to connect multiple computers or devices together and can expand network with ease.

Related articles:

Switch Mac Address: What’s It and How Does it Work?

Network Switch vs Network Router vs Network Firewall

Understanding Network Latency in Ethernet Switches

GUI vs CLI: Which for Managing Network Switch?

Network switch is the major building block of many business networks, as they connect multiple PCs, printers, access points, servers, and other hardware to make your business up and running. Switches enables you to send and receive information and access shared resources in a smooth, efficient and highly secure way. It happens at some points we need to make settings or adjustments on switches to perform certain function, like configuring VLAN or check status of switch ports. So how to get the configuration access to a network switch? Does GUI or CLI work better for you? What’s the difference between GUI vs CLI? We’ll address these issues and guide you to manage switch via GUI and CLI.

gui vs cli for configuring network switch

What Is GUI (Graphical User Interface)?

GUI is short for Graphical User Interface – it uses graphics like windows, scrollbars, buttons, etc. to allow users to communicate with the data switch or GUI operating system. It facilitate users, especially novice users in an intuitive and easy-to-learn way. GUI access need recognition and good exploratory analysis and graphics, which is more suitable for users who requires no access to advanced tasks.

what is command line cli

What Is CLI (Command Line Interface)?

CLI stands for Command Line Interface, which allows users to write commands in a terminal or console window to communicate with an operating system. CLI acts as the medium between operators and the network switch: Users have to type command to perform a task. CLI is more accurate than GUI, but it has a very steep learning curve. CLI is appropriate for users who uses it in a regular basis, or for the costly computing where input precision is the priority.

what is gui graphical user interface

GUI vs CLI: What Is the Difference?

GUI vs CLI, both as the mainstream interface for accessing network switch, differs in the following aspects:

Ease of Use: CLI enable users to type manual command in order to perform the desired task whereas in GUI users provided visuals to communicate with the data switch. So the beginners will pick up a GUI much faster than a CLI.

Control: With a GUI, there’s control over files and the operating system – but advanced tasks may still need CLI. While CLI enables all the control over file system and operating system, making tasks simple.

Speed: In GUI, using the mouse and the keyboard to control is slower than using the command line. With CLI, the operator simply use the keyboard and may need to execute only few commands to complete the task.

Hacking: In terms of hacking, all the vulnerability exploits are done from command line. All the remote access and file manipulation are done from the command line.

Scripting: CLI excels in this field since it allows you to create a script that contains few lines of command and it will do the work for you.

Here we use the chart to summarize GUI vs CLI differences.

BASIS FOR COMPARISON
CLI
GUI
Basic
Command line interface enables a user to communicate with the system through commands.
Graphical User interface permits a user to interact with the system by using graphics which includes images, icons, etc.
Device used
Keyboard
Mouse and keyboard
Ease of performing tasks
Hard to perform an operation and require expertise.
Easy to perform tasks and does not require expertise.
Precision
High
Low
Flexibility
Intransigent
More flexible
Memory consumption
Low
High
Appearance
Can’t be changed
Custom changes can be employed
Speed
Fast
Slow
Integration and extensibility
Scope of potential improvements
Bounded

GUI vs CLI: How to Use Them to Manage Network Switch?

CLI and GUI are different kinds of user interfaces with their own merits and drawbacks. It is important to understand where each one excels so you can pick the right tool. Using the defining features of two different tools provides the best of both worlds. The following video, using FS S5850-32S2Q 10GbE switch as an example, offers a complete guide on how to use command line and GUI to access a network switch, through which you may figure out which one fits better for you.

Conclusion

In all, the GUI provides a higher degree of multitasking and more efficiency, whereas CLI offers more control, precision and repeatability. The decision on choosing GUI vs CLI to configure the network switch should better based on user requirements. FS.COM offers a comprehensive product line of network switches, including Gigabit Ethernet switch, Gigabit PoE switch, etc. If you are seeking network switch configuration or management solutions, feel free to contact us at sales@fas.com.

PPPoE vs DHCP: What is the difference?

PPPoE vs DHCP may sound like two irrelevant items since the application of each are not the same: DHCP is a protocol for obtaining IP addresses while PPPoE is a common method of connecting to an ISP. But the debate over PPPoE vs DHCP differences has been around for a long time and thus causes a lot confusions. So in this article we will have PPPoE vs DHCP explained and walk you through how they differ from each other.

PPPoE vs DHCP: DHCP Wiki

DHCP, or Dynamic Host Configuration Protocol, is a standardized client/server network protocol that dynamically assigns IP addresses and other related configuration information to network devices. It is known that each device from a TCP/IP network should have a unique IP address to access the network. So without DHCP configuration, network admins have to configure IP addresses manually if they want to add new computers or move computers from one subnet to another. Usually, a DHCP architecture is made up of DHCP clients, DHCP servers and DHCP relay agents.

dhcp wiki

DHCP works to offer an automated way to distribute and update IP addresses and other configuration information on a network. A DHCP server provides this information to a DHCP client through the exchange of a series of messages. DHCP enables network users to travel anywhere on the network and automatically receive an IP address when they reconnecting. On the other hand, DHCP provides network admins quicker and more reliable IP address configuration – it mitigates configuration errors caused by manual IP address configuration. DHCP also helps to conserve limited IP address space.

PPPoE vs DHCP: What Is PPPoE?

PPPoE, short for Point-to-Point Protocol over Ethernet, is an Ethernet encapsulation of the Point to Point Protocol that is commonly used with dial-up connections. This allows the modem to be a part of the network that multiple users can utilize instead of being connected directly to the computer. PPPoE combines the Point-to-Point Protocol (PPP), commonly used in dialup connections, with the Ethernet protocol, which supports multiple users in a local area network. The PPP protocol information is encapsulated within an Ethernet frame. To employ PPPoE, you need a username and a password provided by your ISP, which you use to dial-up to your ISP and establish a connection. More recent modems now incorporate the PPPoE dialer into them. You can simply set your username and password once and your modem automatically connects to the internet whenever you turn it on.

what is pppoe

PPPoE vs DHCP: How They Differ?

DHCP is a way for a network to allocate unique IP addresses to the devices (i.e. computers, smartphones Gigabit Ethernet switch and etc.) within a network, so that traffic can be delivered back-n-forth without confusion. PPPoE is a way to encapsulate network traffic, based on credentialed access (i.e. username/password). PPPoE needs to be configured correctly before a user can actually connect to the internet, however, modems that use DHCP does not need to be configured and is basically plug and play. So using DHCP to connect to an ISP eliminates the problems that are associated with PPPOE. Just like with computers on a network, you do not need to configure your computer beforehand. You simply leave everything on automatic and leave the configuration to the ISP servers.

The difference between PPPoE vs DHCP can be summarized as following:

  • DHCP is a protocol for obtaining IP addresses while PPPOE is a common method of connecting to an ISP
  • DHCP is very popular and is widely used while PPPOE is slowly falling out of favor
  • You would need to have a username and password with PPPOE while the configuration of DHCP is automatic

Conclusion

So we’ve explored the definition of each term and major PPPoE vs DHCP differences. It is thus to conclude that there is no “one is better than the other”- PPPoE and DHCP serve two entirely different purpose without overlap. Hope it would help to clear out your confusion. Backed by a professional tech team, FS.COM has improved solutions for network devices like Ethernet routers, fiber switch (i.e. 10 Gigabit switch) and servers. To get any further information, reach us via sales@fs.com.

Related Articles:

Switch vs Router vs Modem: What Is the Difference?

OSPF vs BGP: Which Routing Protocol to Use?

Switch vs Router vs Modem: What Is the Difference?

Ethernet switch, router and modem look strikingly similar if only judging by their appearance. However, they each play different roles and are deployed for various purposes in a network. So what is the key difference of switch vs router vs modem? How switch vs router vs modem each functions in a network. We would address these issues in this article by explaining switch vs router vs modem from scratch.

switch vs router vs modem

Switch vs Router vs Modem: All Are Major Network Devices

We’ll start from exploring what exactly network switch, router and modem are and the roles of switch vs router vs modem in a network.

modem router switch diagram
What Is a Modem?

A modem is often provided by your ISP (Internet Service Provider) which enables a network access to the internet. In some cases ISPs provide “hybrid” modem/router combination, this device might be power efficient to some extent, it actually limits your network potentials. So suggestion is to request a standalone modem whenever possible to increase the available resources on the network.

What Is a Router?

When connecting more than one device to a modem, a router is generally required. A router acts as the “traffic director” of a network. It takes information provided by the modem and routes it to the devices attached to the modem, then the router creates Network Address Translated ( NAT) internal private IP address to the connected devices so they can be accessed. Devices like computers, game consoles and etc can be connected to a router wirelessly or through network cables. Some advanced features of a router includes built-in firewall to help protect the network from unwanted traffic.

What Is a Switch in Networking?

A switch (such as a 10GbE switch or Gigabit PoE switch) is used to provide additional ports, expanding the capability of the router. A network switch learns the association between the MAC addresses of connected devices and its switched ports. A switch only sends data to where it needs to go, thus reducing the amount of data on the network, thereby increasing the overall performance of the connected devices while improving security. Often connected to a router, a switch will not provide routing capability and should not be connected directly to the modem unless a DHCP server is present elsewhere on the network.

Switch vs Router vs Modem: Similarities and Differences

As standard components in Ethernet networks, switch vs router vs modem bears many similarities, but there are also some key characteristics to set them apart.

Similarities:
  • Switch vs router vs modem are all small plastic/metal box-shaped electronic device
  • They all allow computers to connect to it for the purpose of enabling communication among them via Internet Protocol
  • They all have some physical ports on the front or back of them, which provide the connection points for computers, a connection for electric power, and LED lights to display working status.
Differences:
Router vs Modem

Routers work at network layer 3 of the OSI model, and it deals with IP addresses. A router is specifically used to join networks together and routes traffic between them. When used at home, your router connect the internal local network to your ISP’s network. And it can be connected to your modem (provided by ISP) on one end and to a switch on the other end (local network). Usually, the Internet port on a router will connect to your modem and the rest of the ports are for switches. A modem has a single coaxial port for the cable connection from your ISP and a single Ethernet port to link the Internet port on your router. Modem is used to connect your ISP using phone line (for DSL), cable connection or fiber (ONT).

Router vs Switch

Like we’ve mentioned, a router works at layer 3 of the OSI model, thereby it allows you to connect multiple computers to each other and also allows them to share a single Internet connection. A switch, however, works at layer 2 of the OSI model (there are also some layer 3 switches that have routing capacities), which connects one point to another in a network temporarily by turning it on and off as necessary. Note that a switch only allows you to connect multiple computers into a local network. The following chart illustrates other differences concerning router vs switch.

Router
Switch
Function
Directs data in a network. Passes data between home computers, and between computers and the modem.
Allow connections to multiple devices, manage ports, manage VLAN security settings
Layer
Network Layer (Layer 3 devices)
Data Link Layer. Network switches operate at Layer 2 of the OSI model.
Data Transmission Form
Packet
Frame (L2 Switch) Frame & Packet (L3 switch)
Used
LAN, MAN, WAN
LAN
Transmission Mode
Full duplex
Half/Full duplex
Broadcast Domain
In Router, every port has its own Broadcast domain.
Switch has one broadcast domain [unless VLAN implemented]
Speed
1-100 Mbps (Wireless); 100 Mbps – 1 Gbps (Wired)
10/100 Mbps, 1 Gbps
Address used for data transmission
IP Address
MAC address
Used for
Connecting two or more networks
Connecting two or more nodes in the same network (L2) or different network (L3)
Faster
In a different network environment (MAN/ WAN), a router is faster than an L3 switch.
In a LAN environment, an L3 switch is faster than a router (built-in switching hardware)
Features
Firewall VPN Dynamic hadling of Bandwidth
Priority rt range On/Off setting of port VLAN Port mirroring

Switch vs Router vs Modem: What’s the Connection Sequence?

The simple rule for connecting switch, router and modem is like this: modem-router-switch (access point)-multiple clients. Put the switch behind a router so all devices connected to either the switch or the router can access the internet simultaneously, while placing the switch right after the modem is just as equal to not putting it – it will waste some of your hardware and cables since all your switch ports aside from the two going between the router and modem will be useless to you.

how to connect switch, router and modem

Conclusion

Here we’ve walked you through the basic concept of switch vs router vs modem, as well as the similarities and differences concerning router vs modem and router vs switch. Hope that has clear some of your confusions. For any further solution related to fiber switch or network router, reach us via sales@fs.com.

What Is IPv6 And Why Is It Important?

IPv6 has been around for over a decade but is not yet seeing broad adoption. However, with the imminent exhaustion of available IPv4 addresses, the lack of IP addresses has become a more pressing problem. As the successor of IPv4, IPv6 will not only offer far more addresses, but will address assignments and additional network security features. What is IPv6 and how does it matters? What’s the differences between IPv4 vs IPv6? Let’s get some insight into these issues.

what is ipv6 protocol

What Is IPv6 and How Does It Matter?

IPv6 (Internet Protocol Version 6) is a network layer protocol which allows communication and data transfers to take place over the network. IPv6 came into existence in 1998 and was created out of the concern that demand for IPv4 addresses would exceed availability. IPv6 protocol, which is 128-bits, consists of eight numbered strings, each containing four characters, separated by colon. This gives us an unbelievable amount of unique IP addresses. Despite these, IPv6 protocol also simplifies address assignment (for computers) and provides additional security features. It greatly solves network bottleneck caused by the soaring amount of Internet-connected devices.

Advantages and Disadvantages of IPv6 Protocol

IPv6 protocol is all about future-proofing, with which every current household could have trillions of connected devices, each with their own individual IP addresses, and there would still be plenty of IPv6 addresses to spare, without the need for NAT. Here are the pros and cons of IPv6.

Pros of IPv6 Ptotocol
  • Increased Capacity: of address space—resources are efficiently allocated to accommodate additional web addresses.
  • Efficient Routing: allows for easy aggregation of prefixes assigned to IP networks.
  • Efficient Data Flow: enables large data packets to be sent simultaneously helping to conserve bandwidth.
  • Security: is improved due in part to improved authentication methods built into network firewalls.
Cons of IPv6 Ptotocol
  • Conversion: IPv4 is still widely used and the world is slow to convert to IPv6, the process of making the switch to IPv6 from IPv4 is slow and tedious.
  • Communication: IPv4 and IPv6 machines cannot communicate directly to each other, in the very rare circumstance that they would need to.
  • Readability: Understanding IPv6 subnetting can be difficult on its own, let alone trying to remember/memorize your IPv6 address.

IPv4 vs IPv6: What’s the Difference?

IPv4 protocol consists of four number strings – each containing three digits separated by dots. A standard IPv4 address is 32-bit and allows 4.2 billion unique IP addresses. By comparison, IPv6 uses longer IP addresses: with eight groups of four hexadecimal digits, separated by colons. Hence IPv6 significantly expands the pool of IP addresses. Besides, it also frees the internet from relying on NAT because of the dearth of IPv4. Ipv6 enables all devices to be accessible on the public network for easier management. Moreover, IPv6 is much secure than IPv4 at making sure Internet traffic gets to the correct destination without being intercepted.

ipv4 vs ipv6

What You Need to Enable IPv6

IPv6 has not yet put IPv4 into obsolescence, but we should at least get fully prepared for it. It would be better to make sure that any future PC, mobile device and gigabit Ethernet switch/router support IPv6 protocol. To use IPv6, you’ll need three things:

  • An IPv6-Compatible Operating System: Your operating system’s software must be capable of using IPv6. All modern desktop operating systems should be compatible.
  • A Ethernet Switch/Router With IPv6 Support: Check your network switch/router’s specifications to see if it supports IPv6 if you’re curious. Or when the need occurs, try to grasp network switch/router with IPv6 function.
  • An ISP With IPv6 Enabled:Your Internet service provider must also have IPv6 set up on their end.

Conclusion

IPv6 is rolling out steadily, but slowly. As IPv6-only networks can dramatically simplify network operations and keep costs down, there is reason to believe the trend will continue. It’s important to prepare for the future and get IPv6 working, however, there is no need to race to implement this or worrying about it too much. FS.COM offers IPv6 enabled 10GbE switch and other copper/fiber switch with advanced feature sets that can fit your varying demand. For further information, contact us via sales@fs.com.

OpenFlow Switch: What Is It and How Does it Work?

SDN (Software-Defined Networking) technology is generating huge interest in networking industry due to its ability to add higher agility and scalability for networks. At the core of the SDN technology is the OpenFlow protocol, and SDN with OpenFlow switch promises flexibility and fast configuration of communication networks. So what exactly is OpenFlow and OpenFlow switch? How does OpenFlow switch work to improve network agility and scalability? We try to explain it in detail and clear out the confusions.

What is OpenFlow and OpenFlow Switch?

OpenFlow is a programmable network protocol for SDN environment, which is used for communication between OpenFlow switches and controllers. OpenFlow separates the programming of network device from underlying hardware, and offers a standardized way of delivering a centralized, programmable network that can quickly adapt to changing network requirements.

openflow protocol

An OpenFlow switch is an OpenFlow-enabled data switch that communicates over OpenFlow channel to an external controller. It performs packet lookup and forwarding according to one or more flow tables and a group table. The OpenFlow switch communicates with the controller and the controller manages the switch via the OpenFlow switch protocol. They are either based on the OpenFlow protocol or compatible with it.

what is openflow switch

How Does OpenFlow Switch Work?

An OpenFlow switch can only function with the collaborate work of three essential elements:  flow tables installed on switches, a controller and a proprietary OpenFlow protocol for the controller to talk securely with switches. Flow tables are set up on switches. Controllers talk to the switches via the OpenFlow protocol and impose policies on flows. The controller could set up paths through the network optimized for specific characteristics, such as speed, fewest number of hops or reduced latency.

OpenFlow Switch vs Conventional Switch: What’s the Difference?

In a conventional switch, packet forwarding (the data plane) and high-level routing (the control plane) occur on the same device. While for an OpenFlow switch, the data plane is decoupled from the control plane: with the data plane implemented in the switch itself but the control plane in software and a separate SDN controller makes high-level routing decisions. The switch and controller communicate by means of the OpenFlow protocol. OpenFlow switch hence boosts the following advantages:

  • With OpenFlow enabled switch, the SDN controller could route non critical/bulk traffic on longer routes that are not fully utilized.
  • The SDN controller can easily implement load-balancing at high data rates by just directing different flows to different hosts, only doing the set-up of the initial flow’s.
  • Traffic can be isolated without the need for vlan’s, the SDN controller of OpenFlow switch can just refuse certain connections.
  • Setup a network TAP/Sniffer easily for any port or even specific traffic by programming the network to send a duplicate stream to a network monitoring device.
  • It also allows for the development of new services and ideas all in software on the SDN controller, as well to accelerate new features and services.

Why OpenSwitch Is the New Trend?

OpenFlow switch is designed to provide consistency in traffic management and engineering, by making control function independent of the hardware it’s intended to control. This combination of open source software and commodity hardware holds the potential for unprecedented efficiency and operational agility, which fitted well in the world where network becomes increasingly diverse and demanding. Enabling OpenFlow on physical switches and move to OpenFlow switch is something that most clients have been working toward. FS.COM switch product line consists of 10GbE switch, 40GbE switch and 100GbE switch that supports OpenFlow 1.3, which can be used as OpenFlow switches in open networking environment.

10G SDN Switch with L2/L3 ICOS, 48*10GbE ports + 6*40GbE ports
40G SDN Switch L2/L3 ICOS, 32*40GbE ports
100G L2/L3 Switch Loaded with ICOS, 48*25GbE ports +6*100GbE ports

Conclusion

OpenFlow switch addresses bottlenecks to high performance and scalability in SDN environments. Providing an efficient, vendor-independent approach to managing complex networks with dynamic demands, it is likely to become commonplace in large carrier networks, cloud infrastructures, and other networks. FS.COM SDN OpenFlow switch has received great reputations from our customers, for more information, just reach us via sales@fs.com.

Related Article: Unveil the Myths About SDN Switch