Monthly Archives: January 2014

Erbium-Doped Fiber Amplifier for DWDM Systems

Share

DWDM EDFA (Erbium-Doped Fiber Amplifier) is a key component in DWDM network systems. It uses an optical supervisory channel power adjustment and extends the power link budget for long distance DWDM communication systems. As the operating bandwidth of the EDFA has 30nm, it can zoom back of a plurality of different wavelength optical signals, and so it can be very conveniently used in DWDM systems to compensate for various optical attenuation.
With gain flattening filter, DWDM EDFA offers constant flat gain for multi-channel DWDM systems. It works at C-band or L-band, integrates electric driver, remote control, temperature control, and alarm circuits all together in a small package. It has assembled up to three pump lasers to meet the different output power levels required by DWDM systems and protect the pump failure.

FiberStore provides 40 channel BA Module DWDM EDFA. This product is spectrum flat EDFA for DWDM system. It offers high optical gain, low noise figure and high saturation optical power which are fully integrated with various kinds of DWDM systems. This DWDM EDFA has perfect network interfaces including one Ethernet RJ45 port, one RS232 port and two RS485 ports. And the open mib ensure the connectivity with all other network management system. Click here for the DWDM EDFA price.


FiberStore DWDM EDFA Features

1. Low noise figure with typical 4.5dB and high flatness with typical 1dB

2. Covers whole C-band and carries 40 or 80 channels

3. Redundancy hot swap power module with 110/220V AC and 48V DC can plug mix

5. Supports telnet and SNMP network management

6. Gain can be adjustable by network and manual

7. High precise AGC (automatic gain control) and ATC (automatic temperature control) circuits
8. High saturation output power

9. Flexible mechanics and circuit structures (Module, 1U Rack and Gain Block)

10. OEM is available and fully compatible with Telecordia GR-1312-CORE

FiberStore DWDM EDFA Functions

1. A 5V OLT 25W ATT power supply with input protection and output filtering. It is necessary to monitor the current supplied to the EDFA (this gives a measure of the aging of the device) and desirable to monitor the voltage.

2. Drive two digital input lines which control the gain of the DWDM EDFA.

3. Monitor two analog outputs which measure the input and output optical amplifier power levels.

4. Communicate with the EDFA serial port which is RS232 protocol but at TTL levels. (This allows more detailed health monitoring and setting of operating conditions that is possible using only the digital signals.)

5. Communicate with a LMA monitor and control bus. The controller is a circuit card 40mm wide by 220mm high.

Cisco SFP and SFP+ Transceiver Modules Installation Guide

Share

Cisco is one of the worldwide major fiber optic network equipments provider, the networking engineers may time and again facing the problems of install fiber optic transceivers to other Cisco devices for optical signal transmission. This article provides the installation instructions for Cisco small-factor pluggable (SFP) and SFP+ transceiver modules. These modules are hot-swappable input/output (I/O) devices that plug into 100Base, 1000Base and 10Gbase ports, to connect the module ports with the fiber optic or copper network.

Cisco SFP+ transceiver modules installation is the combination of Cisco original SFP+ or compatible Cisco SFP+ transceiver modules with your Cisco devices. Each port must match the wavelength specifications on the other end of the cable and that the cable must not exceed the stipulated cable length for reliable communications. Using only Cisco or compatible Cisco SFP+ transceiver modules on your own Cisco devices, as it allows a Cisco switch or router to identify and validate that the transceiver modules is certified and tested by Cisco.

Cisco SFP transceiver module product number and description at Compatible cisco SFP transceiver:
Cisco SFP+ transceiver module product number and description at Compatible cisco SFP+ transceiver

Take SFP module for example, let’s discuss the installation guid and note.
To begin the installation, tools you need is listed below:
Wrist strap or other personal grounding device to prevent ESO occurrences
Antistatic mat or antistatic foam to set the transceiver on
Fiber optic end-face cleaning tools and inspection equipment.

SFP transceiver module have three types of latching devices to secure an SFP transceiver module in a port socket: mylar tab latch, actuator button latch, bail clasp latch. Knowing which type of latch your SFP transceiver module uses is crucial before the installation.

Disconnect all fiber optic cables before the installation
Attache an ESD-preventive wrist strap to your wrist and to the ESD ground connector or a bare metal surface on your chassis.
Removing the SFP transceiver module from its protective packaging.
Check the label on the SFP transceiver module body to verify that you have the correct model for your network.
Find the send (TX) and receive (RX) markings that identify the top side of the SFP transceiver module.
Position the SFP transceiver module in front of the socket opening. Different Cisco devices have different SFP module socket configurations. Your Cisco device could have either a latch-up or a latch-down orientation. Ensure that you are installing the SFP transceiver module in the correct orientation for your Cisco device.
Insert the SFP module into the socket until you feel the connector latch into place.
Press the SFP into the slot firmly with your thumb to ensure that the transceiver is properly latched in the socket.

After the installation steps above, the verification is needed. Grasp the SFP and try to remove it without releasing the latch. If the SFP can not be removed, it is installed and seated properly. If the SFP can be removed, you need to re-insert it and press harder with our thumb, repeat it until it is latched securely into the socket.

Fiber Optic Visual Light Testers from FiberStore

Share

Visual fault locators can be part of OTDR, which is able to locate the breakpoint, bending or cracking of the fiber glass. It can also locate the fault of OTDR dead zone and make fiber identification from one end to the other end. Fiber optic visual fault locators include the pen type, the handheld type and portable visual fault locator. FiberStore also supply a new kind of fiber optic laser tester that can locates fault up to 30km in fiber optic cable.

The new visual fault locator fiber optic laser tester 30km is especially designed for field personnel who need an efficient and economical tool for fiber tracking, fiber routing and continuity checking in an optical network during and after installation. It can send fiber testing red light through fiber optic cables, then the breaks or faults in the fiber will refract the light, creating a bright glow around the faulty area. Its pen shape made it very easy to carry, and its Cu-alloy material shell made it sturdy and durable, 2.5nm universal interface make it more attractive. The inspection distance various according to different mode.

Features
Easy to check fiber faults with visual red laser light
FC, SC, ST General interface
Sturdy and durable shell
Constant output power
Long inspection distance
Operates in either CW (Continuous wave) or pulse (Both modes are available)
Pen pattern design, convenient for use and carry
Dust-proof design keeps fiber connectors clean

Compact in size, light in weight, red laser output, both SM and MM available

FiberStore provides enough stock of fiber optic visual light testers which usually be shipped out in a short time, and can be shipped out in 2-4 business days. We offer 1 years warranty for the quality of these products, so customers can place the order with 100% confidence!

Several Types of Fast Connectors From FiberStore

Share

FiberStore has developed and dealt with many type of field assembly connectors for many years, the field assembly connectors can be assembled easily and quickly in the field without the additionalfiber termination tools, and can be directly connected to drop cable and indoor cable, thus significantly reducing the required work time.

Field assembly connector is a revolutionary field installable optical fiber connector been widely used in passive optical construction field. This connector system doesn’t need any additional assembling tools such as as epoxy, adhesive and costly curing ovens, thus allowing the installer and make new connectors within a mere 3 minutes in the field. It also increasing the flexibility of optical wiring design of FTTH network. The Field assembly connectors have already been widely used in optical distribution cabinet, optical testing instrument and optical transmission network.

FiberStore provide high reliability FC, SC fast connectors in Fiber direct-in type and Preset fiber with matching fluid type, catering for 250um to 900um diameter single mode and multimode fiber types, including Multi-mode 62.5/125um and Multi-mode 50/125um.

Quick Assembly connector SC FC
Quick Assembly SC connector can provide a quick and easy termination of fibers in the field, Both single mode and multi mode connector options are available for 900 micron and 3mm drop cable application, allowing the installer to terminate and make connection in 3 minutes in the field. Special fiber optic crimp tool free design makes it easy in assembling.

Pre-polished Ferrule Field Assembly Connector
Pre-polished ferrule field assembly connector type is a part of optical fiber and has been polished and a pre-polished ferrule and a mechanical splice inside the connector body. The polished ferrule ensures a low insertion loss of the connector. Compare to the direct-in connector, it has a much more stable performance and a longer life time. Our pre-polished ferrule field assembly connectors are now available in FC, SC variants, the single-mode versions are available with PC or APC ferrules.

Without Ferrule Field Assembly Connector
Assembly of the SC, FC type quick connector requires only normal fiber preparation tools: a fiber stripping tool, wipes and a fiber cleaver. No electrical power supply is needed. This fast connectors feature a pre-stubbed factory-polished ferrule that couples to the fiber being terminated. Precision mechanical alignment insures low loss with a proprietary gel.

Cable Mechanical Splicer
Fiber mechanical splicer includes fast fiber optic mechanical splice for 250um bare fiber, MC-L925B optical fiber mechanical splicer, and FTTH drop cable mechanical splicer. Cable mechanical splicer take a global leading submicron processing technology, Use core component of high accuracy V groove provide high alignment, its unique structure had got IPR in 2007. As the first domestic mechanical splicer, the cable mechanical splicer sell well in domestic and abroad market and fill the domestic production of technology and product gaps, cable mechanical splicer have taken great role in FTTH.

Fusion Splice-on Connector
Fusion Splice-on Connector is actually an optical fiber fusion, however the welding point is in the inner end of connector, which makes it no necessary for extra protection equipment, such as fiber protection plate(optical fiber splice tray), optical fiber terminal box, optical fiber distribution frame, after it finished splice fusion. Compared to mechanical optical fast connector, this new practical connector can improve the span life of welding point of connector and reduce maintenance cost.

Besides Fast Connector, we also offer a variety of connector type , including ST, FC, SC, LC, MU, FDDI, E2000 (other connectors types such as OM4 50/125 ST-ST connectors) Fiber Connector etc for Fiber Patch Cord Assembly.

Netgear SFP Transceivers Series from FiberStore

Share

FiberStore is mainly engaged in providing complete portfolio of high performance fiber optic network solutions including fiber optic transmission components, fiber optic cabling, FTTX networking equipment, and even fiber optic testing and tools. Fiber optic transceivers manufacturing is one of the main business part of FiberStore factory. We provide not only the high performance original designed fiber optic transceivers but also a series of compatible transceiver for major brands such as Cisco SFP, HP SFP, Juniper SFP, Netgear SFP, etc.This article will mainly introduce one of the hot-sale compatible transceivers Netgear SFP transceivers.

Netgear is a U.S manufacturer of computer networking equipment and other computer hardware. This company is independent from Nortel in 2002, and began to sell products through multiple sales channels worldwide, including traditional retailer, online retailers, wholesale distributors, direct market resellers, value added resellers and broadband service provider. FiberStore now can provide transceiver module for Netgear devices, our transceivers modules can be 100% compatible with Netgear, below is the introduction on the compatible Netgear SFP transceivers AGM731F, AGM732F, AGM733F

AGM731F – 1000Base-SX Netgear SFP, 850nm, 550M, MMF
AGM732F – 1000Base-LX Netgear SFP, 1310nm, 10KM, SMF
AGM733F – 1000Base-ZX Netgear SFP, 1550nm, 70KM, SMF

Small-form-factor pluggable (SFP) is a specification for a new generation of optical modular transceiver. These SFP transceivers are designed for use with small form factor (SFF) connectors, and offer high speed via Fiber cable and physical compactness. FiberStore whlesale & distribute third party compatible Netgear SFP transceivers, these transceivers can be mixed and deployed with Netgear OEM transceivers for seamless network performance and interoperability.

Technical Performance for AGM731F Netgear, AGM732F Netgear, AGM733F Netgear

Product Type: SFP transceiver module
Data Rate: 1Gbps
Interface (Bus) Type: Plug in module
Connectivity Technology: Wired
Application: 1000BASE SX, 1000Base-LX, 1000Base-ZX
Connector Type: LC Duplex
Fiber Type: Single Mode Fiber (SMF), Multi-Mode Fiber (MMF) – AGM733F

FiberStore Inc.has a large quantity of Netgear SFP compatible transceivers in stock that can be shipped worldwide in very short time. Customers can also customize the Netgear SFP optical transceivers to their special requirements, and design the label and packing for their company. Besides, FiberStore also provide OEM solutions for other brands such as Avago SFP transceivers (AFCT 5715PZ, AFCT 5715APZ, HFCT-5710LP, etc.)

SFP+ Active and SFP+ Passive Twinax Cable

Share

Twinax cable is a type of cable similar to coaxial cable. The difference is that there are two inner conductors other than on in coaxial cable. This kind of cable is commonly used for very short range high speed differential signaling applications. There are basically two types of twinax cable for 10G Ethernet: SFP+ active and SFP+ passive twinac cable.

Currently there is a copper 10 Gigabit Ethernet cables which comes in either an active or passive Twinax cable assembly and connects directly into an SFP+ housing. SFP+ cable is a twinax cable with SFP+ connector at each end. An active twinax cable has active electronic components in the SFP+ housing to improve the 10 Gig Ethernet signals quality. A SFP+ passive twinax cable is just a direct attach cable and contains no active components to boost signal.

SFP+ Passive  Direct Attach Twinax cable is suitable for very short distances. They are rated for a range up to 5m and provide a good working solution at a great cost. When the distance between connection points exceed 5m. It is highly recommended to use active cable to ensure signals are transmit all the way through. 5m as the boundary is not absolute, as it may vary from vendor to vendor. For example, FS.COM 10G SFP+ passive twinax cable can be the optimum solution for 10G Ethernet reaches up to 12M.

Except the transmission length, there is indeed no visual difference between SFP+ active and passive twinax copper cable. SFP+ connectors are the same and the cable jackets are also identical. Most manufactures including FS.COM will have some sort of marking on the cable connector head which will identify the cable as active or passive. But it is also not simply to tell by just looking at it.

The major applications of SFP+ twinax cable are working with network hardware with SFP+ slot. FS.COM SFP+ cables can be compatible with major brands such as Cisco, HPL, Juniper, Extreme, H3C etc. This type of connection is able to transmit at 10 Gigabit/second full duplex speeds over 12 meter distances. What’s more, this setup also offers 15 to 25 times lower transceiver latency than current 10GBASE-T Cat6/CAT6a/Cat7 cabling systems.

CWDM Technology VS DWDM Technology

Share

WDM is a technology that is achieved using a multiplexer to combine wavelengths traveling through different fibers into a single fiber. The space between the individual wavelengths transmitted through the same fiber are the basis for differentiating the CWDM and DWDM.

CWDM- Coarse wavelength division multiplexing. WDM systems with fewer than eight active wavelengths per fiber. DWDM – Dense wavelength division multiplexing. WDM systems with more than eight active wavelengths per fiber.

CWDM is defined by wavelengths. DWDM is defined in terms of frequencies. DWDM’s tighter wavelength spacing fit more channels onto a single fiber, but cost more to implement and operate. CWDM match the basic capacities of DWDM but at lower capacity and lower cost. CWDM enable carriers to respond flexibly to divers customers needs in metropolitan regions where fiber may be at a premium. The point and purpose of CWDM is short-range communications. It uses wide-range frequencies and spreads wavelengths far apart from each other. DWDM is designed for long-haul transmission where wavelengths are packed tightly together. Vendors have found various techniques for cramming 32, 64, or 128 wavelengths into a fiber. DWDM system is boosted by Erbium-Doped Fiber Amplifier, so that to work over thousands of kilometers for high-speed communications.

Hardware Cost
The cost difference between CWDM and DWDM systems can be attributed to hardware and operational costs. Despite the superiority in terms of cost of DWDM laser with respect to the CWDM DFB laser chilled provide cost effective solutions for long haul and metro rings large capacity demanding. In both applications, the cost of DWDM system is set off by the large number of customers who use this system. Except for encapsulation, the DWDM laser for stabilizing the temperature with a cooler and a thermistor, it is more costly than an uncooled laser coaxial CWDM.

Power Consumption
The energy requirements for DWDM are significantly higher. For example:DWDM laser temperature stabilized through coolers integrated modules encapsulation, These devices together with the associated PIN and the control circuit consumes approximately 4 W of power per wavelength monitor. However, an uncooled CWDM laser transmitter consumers about 0.5w. The transmitter of 8 channel CWDM system consume about 4W of power, while the same functionality in a DWDM system can consume up to 30W. As the number of wavelengths in DWDM systems with increased transmission speed, power and thermal management associated with them becomes a critical issue for the designers.

Because DWDM doesn’t span long distance as its light signal isn’t amplified, which keeps costs down but also limits maximum propagation distances. Manufacturers may cite working ranges of 50 to 80 kilometers, and by signal amplifiers to achieve 160 kilometer. CWDM supports fewer channels and that may be adequate for carrier who would like to start small but expand later when demand increases.

Related article: How to Install Your CWDM MUX/DEMUX System?

Overview of Miller Fiber Optic Stripper

Share

Miller is a diversified global company specialized in high-tech products in development. It’s diverse business involves in welding, cable & wire tools, winery, furniture and even textile. Miller Cable & wireless tools are very famous fiber optic tools that feature top technology and perfect performance.

FiberStore, as the major global fiber optic tools provider, is proud to become the agent for the original Miller fiber optic tools. Our Miller fiber optic tools include fiber scribers, cable Strippers, cutting tools and Kevlar shears.

A precise stripper is utilized to remove the buffer coating of the fiber itself for termination. There are three types of fiber strippers available, known as the Miller Stripper, No-Nik and Micro-Strip. These three can work equally well, and most techs choose the one they are most acquainted with. The Miller striper is used on the left thus has the disadvantage of being “right-handed”, Which is considered to be the most rugged. The No-Nik is careful with the fiber but requires careful cleaning. Check out the original Miller Fiber optic stripper features:

Miller Fiber Optic Stripper FO 103-D-250
New Dual holes models offer he same quality of our standard FO 103-S fiber tool coupled with a second hole
FO 103-D-250: Second hole for stripping 900 micron tight buffer down to 250 micron buffer coating and standard 125 micron fiber stripping (250 micron removal to 125 micron) – allows longer
Stripping lengths without damaging the fiber
Easy-to-read stripping diagrams imprinted on handles
Made in the U.S.A.
Length: 5.375 in (137mm)
Weight: 2.5 oz (71g)

Miller Fiber Optic Stripper FO 103-T-250-J
New three-hole model performs all common fiber stripping functions in one compact tool….
Hole for removal of 2 to 3 mm fiber jackets
Remove 900 tight buffer to 250 micron buffer coating
Standard 250 to 125 micron stripping
Same consistent quality and features found in our standard FO 103-S tool
Made in the U.S.A.
Length: 5.375 in (137mm)
Weight: 2.5 oz (71g)

Miller FO 103-S Fiber Optic Stripper
For stripping 250 micron buffer coating from 125 micron optical fiber
Precision diameter hole & V-opening in blade allow for accurate buffer coating removal
NEW pivot pin, spring and precision handles enhances tool functionality and durability
Factory set, requires no adjustment
Prevents scratching or nicking of optical fiber
All cutting surfaces are precision formed, hardened, tempered and ground assuring precise buffer removal
Made in the U.S.A.
Length: 5.375 in (136.53mm)
Weight: 2.5 oz (71g)

Miller Fiber Optic Stripper CFS-2
For stripping 250 micron buffer coating to expose 125 micron cladding fiber
Second hole for stripping 2-3mm fiber jackets
140 µm diameter hole and V-opening in blade allows removal of 250 micron buffer coating from 125 micron fiber
Pre-set at the factory – no adjustments needed
Will not scratch or nick glass fiber
All stripping surfaces are manufactured to precise tolerances to assure clean, smooth strips
Comfort-grip, ergonomic handles
Lock to hold tool closed when it is not in use
Length 6.43 in (165.00mm)
Weight 4.17 ounces (119.0g)

Most strippers are “sized” for the fiber coatings to be removed. So ensure you have the proper stripper for the fiber being stripped. Whichever stripper is used. Care must be taken to not nick the Fiber during the stripping process as it can cause cracks that may lead to fiber failure sometime in the future. Strippers require careful cleaning and immediate replacement if they become damaged or worn.

Strippers are sized for the fiber coatings to be removed. So ensure you have the proper stripper for the fibers to be stripped. Whichever stripper is used, you must take care to not nick the fiber during the stripping process as it can cause cracks that may lead to fiber failure sometime in the future. fs.com supplies various of high quality fiber optic tools individually or in kits, most of the price is extremely cheap, even the fiber optic tool kit price is with attractive discount rate.

Bare Fiber Adapter Installation Guide

Share

Bare fiber adapter is a typical type of fiber optic adapters that places industry standard connectors on unterminated fiber. It is contained in a durable aluminum-alloy housing which is easy to stabilize any magnetic surface for hands free use. Bare fiber adapter provides a temporary connection that eliminates the time consuming process of splicing jumpers onto individual fibers to testing, allowing users to easily test and detect fiber damages anywhere, anytime.

ST Bare Fiber Adapter

Bare fiber adapters enable quick and easy temporary connections of single mode and multimode fibers. These adaptors are very useful for connecting fibers to optical power meter, optical time-domain reflectometers (OTDRs) and a variety of other instruments, enabling in-situ functional testing without having to attach a permanent connector.

Bare fiber adapters provide a simple and effective way to use un-terminated fibers with commercial receptacles. Here is the installation guide for the bare fiber adapters.

Steps to Install Bare Fiber Adapter

Attaching the patch cord

Clean connectors on fiber jumper or launch reel. Position connector on fiber jumper or launch reel with bare fiber adapter connector port. Insert the connector into the bare fiber adapter connector port until hear a click.

Preparing the fiber

Remove 6 inches of jacket and Kevlar. Remove 1 inch of coating and cladding. Cut the fiber 12mm-15mm long with fiber cleavers.

Inserting the fiber

Clean the bare fiber. Press and hold down the button (There is a button on the adapter) while slowly and carefully inserting the bare fiber into the fiber port. Open the window to visually see the proper alignment of the bare fiber in the V-groove. To prevent accidental breakage of the glass fiber, slowly insert 1/8 inch to 1/4 inch of fiber at a time. Rotate the fiber until the glass aligns with the v-groove to enter the connector port. Push the fiber until it stops in the connector port After that, releaser the button to secure the fiber.

Removing the fiber

Press and hold down the button while slowly and carefully pulling the bare fiber out of the fiber port. Be sure to check for any broken glass fiber pieces after removing the bare fiber from the adapter.

Removing the jumper cable

Slowing pull the fiber jumper connector out the connector port. Broken fibers are easily removed with piano wire, allowing hundreds of insertions.

Conclusion

FS.COM supplies the largest selection of bare fiber adapters connector styles on the market including SC, ST and FC bare fiber optic adaptor with stable qualities. These adapters use high-quality ceramic ferrules and precise fiber connector housing parts, they are used to quickly and easily terminate the fiber to the equipment.

Fiber Optical Multiplexers Catalog Introduction of FiberStore

Share

FiberStore is a company that have rich experience in producing and developing fiber optic multiplexer systems, and have several successful commercial product lines for video/data multiplexing in Remotely Operated Vehicles (ROVs). FiberStore optical multiplexers are designed to provide reliable fiber optic transmission of video, audio and data signals in the demanding subsea applications, robust defense systems and other platforms operating in a harsh environments.

Fiber multiplexer is powerful communications equipment. They allow mixing of T1/E1, Ethernet, POTS ports (FXO or FXS) and serial datacom interfaces such as V.35, RS-232, X.21 etc. Together on a single circuit of fiber optic, so that fiber is saved and higher density and capacity networks can be put together. FiberStore multiplexers are supported by industry leadership in fiber optic development, including optical sensors, telemetry systems, connector design, ruggedized optics, and the widest selection of Fiber Optic Rotary Joints (FORJs). All of these fiber optic multiplexers supports remote management and have optional service line ports. Capacity starts with 4T1 or E1 interfaces on low entry models and goes up to 63T1Ss or E1s together on a single strand of fiber optic cable.

Typical optical multiplexers are Video & Data & Audio Multiplexers, PDH Multiplexer. Custom solutions provide support for additional signal formats or unique combinations of standard protocols. Application specific products can be also customized to reduce size or cost, optimize packaging, extend environmental performance, and integrate more directly with other equipment.

Video Multiplexers
Video multiplexer is used to encodes the multi channel video signals and convert them to optical signals to transmit on optical fibers. It handles several video signals simultaneously and it can also provide simultaneous playback features. With the video multiplexer, you can record the combined signal on your VCR or wherever else you want to record.

Video & Data Multiplexers
FiberStore video & data multiplexers provide high reliable fiber optic transmission of video and data signals in demanding environments. A wide range of supported video and data formats ensure the flexibility needed for easy system configuration. Individual data channels can be mixed and matched with a variety of plug-in interface modules. Advanced optical multiplexing (CWDM, DWDM) enables system expansion to 32 video and 256 data channels as well as additional high data rate signal such as HD-SDI, ECL for advanced sonars, and Gigabit Ethernet.

Video & Audio Multiplexers
Video and audio multiplexer combines digital video with digital audio from the embedded signals. It has optional remote monitoring capabilities so that operation can be monitored remotely. Video & Audio Multiplexer is widely used in security monitoring and control, high way, electronic police, automation, intelligent residential districts and so on.

Video & Data & Audio Multiplexers
Video/data/audio multiplexers are designed for users to convert, integrate, groom and multiple video/audio/data streams effortlessly. These multiplexers can transmit and extend a maximum of video, audio and data over fiber cables up to a few tens of kilometer. They are ideal for applications like Broadcast/Studio, CCTV audio and professional AV applications.

FiberStore now offer a full range of multiplexer products, from single channel media converters for Ethernet and HD-SDI to multi-channel CWDM and DWDM multiplexer supporting 16 or more video lines, 128 serial data channels, multiple digital I/O, plus 10/100/100M Ethernet and high bandwidth sonar interfaces, all on a single optical fiber.